Usage Vignette#
Introduction#
Since the use of High-throughput sequencing (HTS) was first introduced
to analyze immunoglobulin (B-cell receptor, antibody) and T-cell
receptor repertoires (Freeman et al, 2009; Robins et al, 2009; Weinstein
et al, 2009), the increasing number of studies making use of this
technique has produced enormous amounts of data and there exists a
pressing need to develop and adopt common standards, protocols, and
policies for generating and sharing data sets. The Adaptive Immune
Receptor Repertoire (AIRR) Community
formed in 2015 to address this challenge (Breden et al, 2017) and has
stablished the set of minimal metadata elements (MiAIRR) required for
describing published AIRR datasets (Rubelt et al, 2017) as well as file
formats to represent this data in a machine-readable form. The airr
R package provide read, write and validation of data following the AIRR
Data Representation schemas. This vignette provides a set of simple use
examples.
AIRR Data Standards#
The AIRR Community’s recommendations for a minimal set of metadata that should be used to describe an AIRR-seq data set when published or deposited in a AIRR-compliant public repository are described in Rubelt et al, 2017. The primary aim of this effort is to make published AIRR datasets FAIR (findable, accessible, interoperable, reusable); with sufficient detail such that a person skilled in the art of AIRR sequencing and data analysis will be able to reproduce the experiment and data analyses that were performed.
Following this principles, V(D)J reference alignment annotations are saved in standard tab-delimited files (TSV) with associated metadata provided in accompanying YAML formatted files. The column names and field names in these files have been defined by the AIRR Data Representation Working Group using a controlled vocabulary of standardized terms and types to refer to each piece of information.
Reading AIRR formatted files#
The airr
package contains the function read_rearrangement
to
read and validate files containing AIRR Rearrangement records, where a
Rearrangement record describes the collection of optimal annotations on
a single sequence that has undergone V(D)J reference alignment. The
usage is straightforward, as the file format is a typical tabulated
file. The argument that needs attention is base
, with possible
values "0"
and "1"
. base
denotes the starting index for
positional fields in the input file. Positional fields are those that
contain alignment coordinates and names ending in “_start” and “_end”.
If the input file is using 1-based closed intervals (R style), as
defined by the standard, then positional fields will not be modified
under the default setting of base="1"
. If the input file is using
0-based coordinates with half-open intervals (python style), then
positional fields may be converted to 1-based closed intervals using the
argument base="0"
.
Reading Rearrangements#
# Imports
library(airr)
library(tibble)
# Read Rearrangement example file
f1 <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")
rearrangement <- read_rearrangement(f1)
glimpse(rearrangement)
## Rows: 101
## Columns: 33
## $ sequence_id <chr> "SRR765688.7787", "SRR765688.35420", "SRR765688.36681", "SRR765688.33811", "SRR765688.44149", "SRR765688.15636", "SRR765688.20304", "SRR765688.13860", "SRR7…
## $ sequence <chr> "NNNNNNNNNNNNNNNNNNNNGCTGACCTGCACCTTCTCTGGATTCTCACTCAGTACTAGTGCAGTGGGTGTACACTGGATCCGTCAGCCCCCAGGAAAGGCCCTGGAGTGGCTTGCACTCATTTATTGGGATGATGCCAAATATTACAGCACCAG…
## $ rev_comp <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FA…
## $ productive <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, T…
## $ vj_in_frame <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE…
## $ stop_codon <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, …
## $ v_call <chr> "IGHV2-5*02", "IGHV5-51*01", "IGHV7-4-1*02", "IGHV7-4-1*02", "IGHV7-4-1*02", "IGHV2-5*02", "IGHV7-4-1*02", "IGHV6-1*01,IGHV6-1*02", "IGHV7-4-1*02", "IGHV4-3…
## $ d_call <chr> "IGHD5-24*01", "IGHD3-16*02,IGHD3-3*01,IGHD3-3*02", "IGHD3-22*01", "IGHD3-9*01", "IGHD1-26*01", "IGHD2-21*02", "IGHD1-26*01,IGHD2-21*02,IGHD3/OR15-3a*01", "…
## $ j_call <chr> "IGHJ4*02", "IGHJ6*02,IGHJ6*04", "IGHJ4*02", "IGHJ6*02", "IGHJ6*01", "IGHJ4*02", "IGHJ5*02", "IGHJ4*02", "IGHJ4*02", "IGHJ4*02", "IGHJ5*02", "IGHJ6*02", "IG…
## $ c_call <chr> "IGHG", "IGHG", "IGHG", "IGHG", "IGHG", "IGHA", "IGHA", "IGHG", "IGHG", "IGHA", "IGHA", "IGHG", "IGHA", "IGHA", "IGHG", "IGHA", "IGHG", "IGHA", "IGHG", "IGH…
## $ sequence_alignment <chr> "...........................................................GCTGACCTGCACCTTCTCTGGATTCTCACTCAGT......ACTAGTGCAGTGGGTGTACACTGGATCCGTCAGCCCCCAGGAAAGGCCCTGGAGTG…
## $ germline_alignment <chr> "CAGATCACCTTGAAGGAGTCTGGTCCT...ACGCTGGTGAAACCCACACAGACCCTCACGCTGACCTGCACCTTCTCTGGGTTCTCACTCAGC......ACTAGTGGAGTGGGTGTGGGCTGGATCCGTCAGCCCCCAGGAAAGGCCCTGGAGTG…
## $ junction <chr> "TGTGCACACAGTGCGGGATGGCTGCCTGATTACTGG", "TGTGCGAGGCATGGATTATACGGTTGTGATCATACCGGCTGTTATACAAGCTTCTACTACTACGGGATGGACGTCTGG", "TGTGCGAGAGAAGAACGTCGAAGTAGTGGTTAT…
## $ junction_aa <chr> "CAHSAGWLPDYW", "CARHGLYGCDHTGCYTSFYYYGMDVW", "CAREERRSSGYFDHW", "CAREGYYFDTTGSPRSHGLDVW", "CARDSGGMDVW", "CVLSRRLGDSGVQKYYFDYW", "CAREGLWDGRVVTDLW", "CARTR…
## $ v_cigar <chr> "20S56N21=1X11=1X7=1X9=3X62=6D2=1X1=2X2=2X50=1X7=1X4=1X22=1X30=", "20S40N15=1X15=1X11=1X2=1X1=1X1=2X3=1X7=1X41=2X2=1X10=1X3=1X1=1X5=2X5=1X4=1X9=1X19=1X24=2X…
## $ d_cigar <chr> "274S5N7=", "305S29N7=", "293S13N12=", "290S9N8=", "283S4N7=", "273S12N8=", "289S6N6=", "267S9N9=", "281S7N5=", "278S7N5=1X7=", "277S8N7=", "297S9N7=", "265…
## $ j_cigar <chr> "288S11N32=1X4=", "318S7N12=1X15=", "305S5N6=1X14=1X21=", "321S15N5=1X23=1X17=", "290S17N19=", "296S26=1X21=", "311S11N4=1X33=", "280S2N17=1X6=1X21=", "299S…
## $ v_sequence_start <int> 21, 21, 21, 21, 21, 21, 21, 20, 22, 21, 21, 20, 21, 21, 21, 21, 19, 21, 21, 21, 20, 21, 21, 21, 21, 21, 20, 23, 19, 21, 20, 21, 21, 20, 20, 21, 20, 22, 21, …
## $ v_sequence_end <int> 269, 276, 283, 283, 283, 264, 283, 259, 281, 266, 264, 294, 258, 283, 273, 279, 274, 259, 278, 280, 262, 271, 281, 262, 264, 283, 259, 279, 278, 280, 261, 2…
## $ v_germline_start <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ v_germline_end <int> 320, 320, 320, 320, 320, 320, 320, 318, 318, 320, 320, 320, 319, 319, 317, 316, 316, 320, 318, 320, 320, 315, 318, 320, 321, 320, 318, 316, 320, 317, 319, 3…
## $ d_sequence_start <int> 275, 306, 294, 291, 284, 274, 290, 268, 282, 279, 278, 298, 266, 292, 301, 285, 276, NA, 291, 284, 273, 279, 289, 277, 272, 299, 270, 292, 282, 295, 267, 26…
## $ d_sequence_end <int> 281, 312, 305, 298, 290, 281, 295, 276, 286, 291, 284, 304, 273, 296, 307, 289, 282, NA, 297, 295, 293, 290, 294, 283, 287, 307, 280, 302, 290, 301, 280, 27…
## $ d_germline_start <int> 6, 30, 14, 10, 5, 13, 7, 10, 8, 8, 9, 10, 10, 7, 22, 14, 4, NA, 24, 4, 2, 5, 8, 9, 6, 3, 1, 3, 7, 7, 4, 6, 11, 14, 12, 8, 2, 11, 8, 10, 5, 24, 4, 17, 5, 5, …
## $ d_germline_end <int> 12, 36, 25, 17, 11, 20, 12, 18, 12, 20, 15, 16, 17, 11, 28, 18, 10, NA, 30, 15, 22, 16, 13, 15, 21, 11, 11, 13, 15, 13, 17, 11, 17, 18, 19, 13, 8, 16, 20, 1…
## $ j_sequence_start <int> 289, 319, 306, 322, 291, 297, 312, 281, 300, 301, 289, 319, 276, 300, 317, 299, 296, 271, 336, 321, 303, 304, 300, 297, 293, 322, 289, 311, 315, 320, 283, 2…
## $ j_sequence_end <int> 325, 346, 348, 368, 309, 344, 349, 326, 339, 347, 335, 361, 326, 334, 350, 333, 346, 320, 370, 338, 332, 338, 339, 333, 340, 368, 332, 345, 342, 362, 327, 3…
## $ j_germline_start <int> 12, 8, 6, 16, 18, 1, 12, 3, 9, 2, 5, 20, 9, 14, 15, 14, 2, 13, 28, 18, 6, 14, 9, 15, 1, 16, 5, 14, 8, 5, 4, 12, 9, 1, 20, 15, 6, 6, 5, 6, 5, 9, 1, 6, 5, 5, …
## $ j_germline_end <int> 48, 35, 48, 62, 36, 48, 49, 48, 48, 48, 51, 62, 59, 48, 48, 48, 52, 62, 62, 35, 35, 48, 48, 51, 48, 62, 48, 48, 35, 47, 48, 46, 48, 44, 62, 48, 48, 51, 50, …
## $ junction_length <int> 36, 78, 45, 66, 33, 60, 48, 45, 36, 61, 51, 48, 51, 30, 54, 30, 48, 42, 71, 66, 78, 42, 36, 51, 57, 66, 51, 42, 72, 60, 45, 45, 45, 42, 36, 36, 57, 48, 51, …
## $ np1_length <int> 5, 29, 10, 7, 0, 9, 6, 8, 0, 12, 13, 3, 7, 8, 27, 5, 1, 11, 12, 3, 10, 7, 7, 14, 7, 15, 10, 12, 3, 14, 5, 4, 4, 6, 1, 7, 1, 5, 4, 5, 26, 5, 0, 15, 26, 26, 8…
## $ np2_length <int> 7, 6, 0, 23, 0, 15, 16, 4, 13, 9, 4, 14, 2, 3, 9, 9, 13, NA, 38, 25, 9, 13, 5, 13, 5, 14, 8, 8, 24, 18, 2, 22, 15, 3, 3, 11, 29, 11, 9, 5, 1, 5, 8, 0, 1, 1,…
## $ duplicate_count <int> 3, 3, 13, 3, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 2, 2, 3, 2, 4, 2, 3, 4, 8, 2, 2, 2, 2, 3, 2, 4, 3, 4, 2, 5, 2, 2, 7, 3,…
Reading AIRR Data Models#
AIRR Data Model records, such as Repertoire and GermlineSet, can be read from either a YAML or JSON formatted file into a nested list.
# Read Repertoire example file
f2 <- system.file("extdata", "repertoire-example.yaml", package="airr")
repertoire <- read_airr(f2)
glimpse(repertoire)
## List of 1
## $ Repertoire:List of 3
## ..$ :List of 5
## .. ..$ repertoire_id : chr "1841923116114776551-242ac11c-0001-012"
## .. ..$ study :List of 13
## .. ..$ subject :List of 15
## .. ..$ sample :List of 1
## .. ..$ data_processing:List of 1
## ..$ :List of 5
## .. ..$ repertoire_id : chr "1602908186092376551-242ac11c-0001-012"
## .. ..$ study :List of 13
## .. ..$ subject :List of 15
## .. ..$ sample :List of 1
## .. ..$ data_processing:List of 1
## ..$ :List of 5
## .. ..$ repertoire_id : chr "2366080924918616551-242ac11c-0001-012"
## .. ..$ study :List of 13
## .. ..$ subject :List of 15
## .. ..$ sample :List of 1
## .. ..$ data_processing:List of 1
# Read GermlineSet example file
f3 <- system.file("extdata", "germline-example.json", package="airr")
germline <- read_airr(f3)
glimpse(germline)
## List of 2
## $ GermlineSet:List of 1
## ..$ :List of 17
## .. ..$ germline_set_id : chr "OGRDB:G00007"
## .. ..$ author : chr "William Lees"
## .. ..$ lab_name : chr ""
## .. ..$ lab_address : chr "Birkbeck College, University of London, Malet Street, London"
## .. ..$ acknowledgements : list()
## .. ..$ release_version : int 1
## .. ..$ release_description : chr ""
## .. ..$ release_date : chr "2021-11-24"
## .. ..$ germline_set_name : chr "CAST IGH"
## .. ..$ germline_set_ref : chr "OGRDB:G00007.1"
## .. ..$ pub_ids : chr ""
## .. ..$ species :List of 2
## .. ..$ species_subgroup : chr "CAST_EiJ"
## .. ..$ species_subgroup_type: chr "strain"
## .. ..$ locus : chr "IGH"
## .. ..$ allele_descriptions :List of 2
## .. ..$ curation : NULL
## $ GenotypeSet:List of 1
## ..$ :List of 2
## .. ..$ receptor_genotype_set_id: chr "1"
## .. ..$ genotype_class_list :List of 1
Writing AIRR formatted files#
The airr
package contains the function write_rearrangement
to
write Rearrangement records to the AIRR TSV format.
Writing Rearrangements#
x1 <- file.path(tempdir(), "airr_out.tsv")
write_rearrangement(rearrangement, x1)
Writing AIRR Data Models#
AIRR Data Model records can be written to either YAML or JSON using the
write_airr
function.
x2 <- file.path(tempdir(), "airr_repertoire_out.yaml")
write_airr(repertoire, x2, format="yaml")
x3 <- file.path(tempdir(), "airr_germline_out.json")
write_airr(germline, x3, format="json")
Validating AIRR data structures#
The airr
package contains the function validate_rearrangement
to
validate tabular (data.frame
) Rearrangement records and AIRR Data
Model objects, respectively.
# Validate Rearrangement data.frame
validate_rearrangement(rearrangement)
## [1] TRUE
# Validate an AIRR Data Model
validate_airr(repertoire)
## [1] TRUE
# Validate AIRR Data Model records individual
validate_airr(germline, each=TRUE)
## GenotypeSet GermlineSet
## TRUE TRUE
References#
Breden, F., E. T. Luning Prak, B. Peters, F. Rubelt, C. A. Schramm, C. E. Busse, J. A. Vander Heiden, et al. 2017. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front Immunol 8: 1418.
Freeman, J. D., R. L. Warren, J. R. Webb, B. H. Nelson, and R. A. Holt. 2009. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19 (10): 1817-24.
Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle, O. Kahsai, S. R. Riddell, E. H. Warren, and C. S. Carlson. 2009. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114 (19): 4099-4107.
Rubelt, F., C. E. Busse, S. A. C. Bukhari, J. P. Burckert, E. Mariotti-Ferrandiz, L. G. Cowell, C. T. Watson, et al. 2017. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data. Nat Immunol 18 (12): 1274-8.
Weinstein, J. A., N. Jiang, R. A. White, D. S. Fisher, and S. R. Quake. 2009. High-throughput sequencing of the zebrafish antibody repertoire. Science 324 (5928): 807-10.