
airr-standards Documentation
Release 1.3

AIRR Community

Oct 13, 2020

Contents

1 Introduction to the AIRR Standards 3

2 Table of Contents 5
2.1 Getting Started . 5
2.2 Release Notes . 15
2.3 AIRR Standards . 20
2.4 Data Submission and Query . 119
2.5 Software . 125
2.6 Community Resources . 150
2.7 Appendix A: Key Terms . 150
2.8 References . 150

Bibliography 151

Index 153

i

ii

airr-standards Documentation, Release 1.3

The Adaptive Immune Receptor Repertoire (AIRR) Community of The Antibody Society is a research-driven group
that is organizing and coordinating stakeholders in the use of next-generation sequencing (NGS) technologies to study
antibody/B-cell and T-cell receptor repertoires. Recent advances in sequencing technology have made it possible to
sample the immune repertoire in exquisite detail. AIRR sequencing has enormous promise for understanding the
dynamics of the immune repertoire in vaccinology, infectious disease, autoimmunity, and cancer biology, but also
poses substantial challenges. The AIRR Community was established to meet these challenges.

Contents 1

airr-standards Documentation, Release 1.3

2 Contents

CHAPTER 1

Introduction to the AIRR Standards

The AIRR Community is developing a set of standards for describing, reporting, storing, and sharing adaptive immune
receptor repertoire (AIRR) data, such as sequences of antibodies and T cell receptors (TCRs). Some specific efforts
include:

• The MiAIRR standard for describing minimal information about AIRR datasets, including sample collection
and data processing information.

• Data submission guidelines and workflows.

• Data representations (file format) specifications for storing large amounts of annotated AIRR data.

• API to query and download AIRR data from repositories/databases as part of the AIRR Data Commons.

• A community standard for software tools which will allow conforming tools to gain community recognition.

• Set of reference software tools for reading, writing and validating data in the AIRR standards.

• A database and web submission frontend for inferred germline genes

3

airr-standards Documentation, Release 1.3

4 Chapter 1. Introduction to the AIRR Standards

CHAPTER 2

Table of Contents

2.1 Getting Started

This website provides information and resources regarding the AIRR Community Standards for the diverse community
of immunology researchers, bioinformaticians, and software developers.

2.1.1 MiAIRR standard for study data submission

• Gather experimental and analysis information about your study to conform to the MiAIRR standard (minimal
information about adaptive immune receptor repertoires).

• Submission of your study data to a public repository.

2.1.2 AIRR Data Commons for query and download of AIRR-seq data

• Query publicly available AIRR-seq studies in the AIRR Data Commons.

2.1.3 Resources related to data representations and software development

• Schema, definitions and file formats for the AIRR Data Model. The AIRR Data Model defines the structure and
relationship for the MiAIRR data elements.

• Software guidelines for tools developers to enable rigorous and reproducible immune repertoire research.

• AIRR Data Commons API provides programmatic access to query and download AIRR-seq data.

2.1.4 Software tools and libraries

• Python reference library for reading/writing/validating AIRR data files.

• R reference library for reading/writing/validating AIRR data files.

5

airr-standards Documentation, Release 1.3

• ADC API reference implementation for a local data repository.

• Resources and tools that support the AIRR Standards.

2.1.5 Tutorials, examples and workflows

AIRR Rearrangement TSV Interoperability Example

The example that follows illustrates the interoperability provided by the AIRR Rearrangement schema. The code
provided demonstrates how to take AIRR formatted data output by IgBLAST and combine it with data processed by
IMGT/HighV-QUEST that has converted to the AIRR format by Change-O. Then, the merged output of these two
distinct tools is used to (a) create MiAIRR compliant GenBank/TLS submission files, and (b) perform a simple V
gene usage analysis task.

Data

We’ve hosted a small set of example data from BioProject PRJNA338795 (Vander Heiden et al, 2017. J Immunol.)
containing both input and output of the example. It may be downloaded from:

Example Data

Walkthrough

Environment setup

We’ll use the Immcantation docker image for this example, which comes loaded with all the tools used in the steps
that follow:

Download the image
docker pull kleinstein/immcantation:devel

Invoke a shell session inside the Immcantation docker image
Map example data (~/data) to the container's /data directory
$> docker run -it -v ~/data:/data:z kleinstein/immcantation:devel bash

Generate AIRR formatted TSV files

TSV files compliant with the AIRR Rearrangement schema may be output directly from IgBLAST v1.9+ or generated
from IMGT/HighV-QUEST output (or IgBLAST <=1.8 ouput) using the MakeDb parser provided by Change-O:

Generate TSV directly with IgBLAST
$> cd /data
$> export IGDATA=/usr/local/share/igblast
$> igblastn -query HD13M.fasta -out HD13M_fmt19.tsv -outfmt 19 \

-germline_db_V $IGDATA/database/imgt_human_ig_v \
-germline_db_D $IGDATA/database/imgt_human_ig_d \
-germline_db_J $IGDATA/database/imgt_human_ig_j \
-auxiliary_data $IGDATA/optional_file/human_gl.aux \
-ig_seqtype Ig -organism human \
-domain_system imgt

(continues on next page)

6 Chapter 2. Table of Contents

http://clip.med.yale.edu/immcantation/examples/airr_example_data.zip

airr-standards Documentation, Release 1.3

Fig. 1: Flowchart of the example steps.

2.1. Getting Started 7

airr-standards Documentation, Release 1.3

(continued from previous page)

Generate TSV from IMGT/HighV-QUEST results using changeo:MakeDb
$> MakeDb.py imgt -i HD13N_imgt.txz -s HD13N.fasta \

--scores --partial --format airr

Generate GenBank/TLS submission files

AIRR TSV files can be input directly in Change-O’s ConvertDb-genbank tool to generate MiAIRR compliant files for
submission to GenBank/TLS:

Generate ASN files from IgBLAST output
$> ConvertDb.py genbank -d HD13M_fmt7_db-pass.tsv --format airr \

--inf IgBLAST:1.7.0 --organism "Homo sapiens" \
--tissue "Peripheral blood" --cell "naive B cell" \
--id --asn -sbt HD13M.sbt

Generate ASN files from IMGT/HighV-QUEST output
$> ConvertDb.py genbank -d HD13N_imgt_db-pass.tsv --format airr \

--inf IMGT/HighV-QUEST:1.5.7.1 --organism "Homo sapiens" \
--tissue "peripheral blood" --cell "naive B cell" \
--cregion c_call --id --asn -sbt HD13M.sbt

Merge files and count V family usage

AIRR TSV files from different tools and easy combined to perform analysis on data generated using different software.
Below is shown a simple V family usage analysis after merging the IgBLAST and IMGT/HighV-QUEST outputs into
a single table:

Count V family usage in R
Imports
$> R
R> library(alakazam)
R> library(dplyr)
R> library(ggplot2)

Merge IgBLAST and IMGT/HighV-QUEST results
R> db_m <- read.delim("HD13M_fmt7_db-pass.tsv")
R> db_n <- read.delim("HD13N_imgt_db-pass.tsv")
R> db_m$cell_type <- "memory"
R> db_n$cell_type <- "naive"
R> db <- bind_rows(db_m, db_n)

Subset to heavy chain
R> db <- subset(db, grepl("IGH", v_call))

Count combined V gene usage
R> v_usage <- countGenes(db, "v_call", groups="cell_type",

mode="family")

Plot V family usage
R> ggplot(v_usage, aes(x=GENE, y=SEQ_FREQ, fill=cell_type)) +

geom_col(position="dodge") +
scale_fill_brewer(name="Cell type", palette="Set1") +

(continues on next page)

8 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

xlab("") +
ylab("Fraction of repertoire")

Fig. 2: V family usage for the combined data set.

ADC API Query and Analysis Example

This example shows how repertoires and associated rearrangments may be queried from a data repository using the
ADC API and then a simple analysis is performed. The example is split between two python scripts; one that performs
the query and saves the data into files, and another that reads the data from the files and generates a grouped CDR3
amino acid length distribution plot. The two scripts could be combined into one, but this example illustrates how the
data can be saved into files for later use. The example uses the AIRR standards python library.

Data

This example retrieves data for the following study, which is identified by NCBI BioProject PRJNA300878. In this
example, we are only going to query and retrieve the T cell repertoires.

Rubelt, F. et al., 2016. Individual heritable differences result in unique cell lymphocyte receptor repertoires of naive
and antigen-experienced cells. Nature communications, 7, p.11112.

Basic study description:

• 5 pairs of human twins

• B-cells and T-cells sequenced

• B-cells sorted into naive and memory

2.1. Getting Started 9

airr-standards Documentation, Release 1.3

• T-cells sorted into naive CD4, naive CD8, memory CD4 and memory CD8

• Total of 60 repertoires: 20 B-cell repertoires and 40 T-cell repertoires

Walkthrough

We’ll use the airr-standards docker image for this example, which comes loaded with all the python packages needed.
You will want to map a local directory inside the docker container so you can access the data and analysis results
afterwards:

Download the image
docker pull airrc/airr-standards:latest

Make local temporary directory to hold the data
mkdir adc_example
cd adc_example

Invoke a shell session inside the docker image
docker run -it -v $PWD:/data airrc/airr-standards:latest bash

The first python script queries the data from the VDJServer data repository and saves them into files:

Query the data
cd /data
python3 /airr-standards/docs/examples/api/retrieve_data.py

Only a subset of the data is downloaded for illustration purposes, but review the code to see how all data can be
downloaded. A total of 40 repertoires and 300,178 rearrangements should be downloaded. The repertoire metadata is
saved in the repertoires.airr.json file, and the rearrangements are saved in the rearrangements.tsv
file. The script should take a few minutes to run and produce the following display messages:

Info: VDJServer Community Data Portal
version: 1.3

description: VDJServer ADC API response for repertoire query
Received 40 repertoires.
Retrieving rearrangements for repertoire: 5168912186246295065-242ac11c-0001-012
Retrieved 9768 rearrangements for repertoire: 5168912186246295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5338391595746455065-242ac11c-0001-012
Retrieved 5521 rearrangements for repertoire: 5338391595746455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4858300151399575065-242ac11c-0001-012
Retrieved 2885 rearrangements for repertoire: 4858300151399575065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5039977268020375065-242ac11c-0001-012
Retrieved 4053 rearrangements for repertoire: 5039977268020375065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6240077029868695065-242ac11c-0001-012
Retrieved 3506 rearrangements for repertoire: 6240077029868695065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6389112395039895065-242ac11c-0001-012
Retrieved 2289 rearrangements for repertoire: 6389112395039895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5939858815878295065-242ac11c-0001-012
Retrieved 3637 rearrangements for repertoire: 5939858815878295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6088937130722455065-242ac11c-0001-012
Retrieved 9028 rearrangements for repertoire: 6088937130722455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7446748091679895065-242ac11c-0001-012
Retrieved 1540 rearrangements for repertoire: 7446748091679895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7591789137265815065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7591789137265815065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7066128089908375065-242ac11c-0001-012

(continues on next page)

10 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

Retrieved 5662 rearrangements for repertoire: 7066128089908375065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5624006920930455065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 5624006920930455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8961797805343895065-242ac11c-0001-012
Retrieved 1179 rearrangements for repertoire: 8961797805343895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 9084118473933975065-242ac11c-0001-012
Retrieved 4464 rearrangements for repertoire: 9084118473933975065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8485700680582295065-242ac11c-0001-012
Retrieved 3908 rearrangements for repertoire: 8485700680582295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7309695685264535065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7309695685264535065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8425807333172056551-242ac11c-0001-012
Retrieved 6863 rearrangements for repertoire: 8425807333172056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8263242821018456551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 8263242821018456551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8733756488295256551-242ac11c-0001-012
Retrieved 5298 rearrangements for repertoire: 8733756488295256551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8602072790999896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 8602072790999896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7313153105470296551-242ac11c-0001-012
Retrieved 9121 rearrangements for repertoire: 7313153105470296551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6964444710708056551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 6964444710708056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7640859110155096551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7640859110155096551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7461458326201176551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7461458326201176551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5953881855632216551-242ac11c-0001-012
Retrieved 5916 rearrangements for repertoire: 5953881855632216551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7158276584776536551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7158276584776536551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6393557657723736551-242ac11c-0001-012
Retrieved 7257 rearrangements for repertoire: 6393557657723736551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6205695788196696551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 6205695788196696551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4476756703191896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4476756703191896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4357957907784536551-242ac11c-0001-012
Retrieved 7033 rearrangements for repertoire: 4357957907784536551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4931851437876056551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4931851437876056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4744762662462296551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4744762662462296551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3252733973504856551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 3252733973504856551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2989624276951896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2989624276951896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3628844259615576551-242ac11c-0001-012
Retrieved 5208 rearrangements for repertoire: 3628844259615576551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3438706057421656551-242ac11c-0001-012
Retrieved 9530 rearrangements for repertoire: 3438706057421656551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2197374609531736551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2197374609531736551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 1993707260355416551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 1993707260355416551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2541616238306136551-242ac11c-0001-012
Retrieved 6512 rearrangements for repertoire: 2541616238306136551-242ac11c-0001-012

(continues on next page)

2.1. Getting Started 11

airr-standards Documentation, Release 1.3

(continued from previous page)

Retrieving rearrangements for repertoire: 2366080924918616551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2366080924918616551-242ac11c-0001-012

The second python script loads the data from the files and generates a CDR3 amino acid length distribution that is
grouped by the T cell subset. This study performs flow sorting to generate four T cell subsets: naive CD4+, naive
CD8+, memory CD4+, memory CD8+. The script uses the repertoire metadata to determine the T cell subset for the
rearrangement, tabulates the counts, normalizes them, and generates a grouped bar chart with the results:

Run the analysis
python3 /airr-standards/docs/examples/api/analyze_data.py

The figure is placed in the plot.png file and should look like this:

Fig. 3: CDR3 AA Length Histogram grouped by T cell subsets.

Scientific Query Scenarios for AIRR Data Commons API

The AIRR Common Repository Working Group (CRWG) has defined a number of sample scientific query scenarios
to guide the design of the ADC API. The Design Decisions document lists the major design choices for the API, and
the API is currently defined using the OpenAPI V2.0 Specification. This document describes the query examples with
associated JSON definitions that can be submitted to an AIRR repository.

There are two main query endpoints in the API: /repertoire for querying MiAIRR-compliant study metadata and /re-
arrangement for querying rearrangement annotations. Most scientific queries will involve both endpoints. The basic

12 Chapter 2. Table of Contents

https://www.antibodysociety.org/airrc/working_groups/repository/
https://github.com/airr-community/common-repo-wg/blob/master/decisions.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

airr-standards Documentation, Release 1.3

workflow involves first querying /repertoire to get the list of repertoires that meet the search criteria on study, subject,
and sample metadata. Secondly, the identifiers from the repertoires in the first query are passed to the /rearrange-
ment endpoint along with any search criteria on the rearrangement annotations. The resultant rearrangements can be
downloaded as JSON or in the AIRR TSV format.

Query Example 1

What human full length TCR-beta sequences have junction amino acid sequence: “CASSYIKLN”?

• The JSON query definition for /repertoire endpoint. The ontology identifier 9606 requests human and
TRB is the locus of interest.

{
"filters":{

"op":"and",
"content": [

{
"op":"=",
"content": {

"field":"subject.organism.id",
"value":"9606"

}
},
{

"op":"=",
"content": {

"field":"sample.pcr_target.pcr_target_locus",
"value":"TRB"

}
}

]
}

}

• That query does not request full length sequences. We can enhance the query by adding a clause for the
sample.complete_sequences field.

{
"filters":{

"op":"and",
"content": [{

"op":"=",
"content": {

"field":"subject.organism.id",
"value":"9606"

}
},
{

"op":"=",
"content": {

"field":"sample.pcr_target.pcr_target_locus",
"value":"TRB"

}
},
{

"op":"or",
(continues on next page)

2.1. Getting Started 13

airr-standards Documentation, Release 1.3

(continued from previous page)

"content":[{
"op":"=",
"content": {

"field":"sample.complete_sequences",
"value":"complete"

}
},
{

"op":"=",
"content": {

"field":"sample.complete_sequences",
"value":"complete+untemplated"

}
}]

}]
}

}

• The JSON query definition for /rearrangement endpoint. The repertoire identifiers
(repertoire_id) in the query are just examples, you would replace them with the actual identifiers
returned from the above repertoire query. The query performs an exact match of the junction amino acid
sequence.

{
"filters":{

"op":"and",
"content": [

{
"op":"in",
"content": {

"field":"repertoire_id",
"value":[

"2366080924918616551-242ac11c-0001-012",
"2541616238306136551-242ac11c-0001-012",
"1993707260355416551-242ac11c-0001-012",
"1841923116114776551-242ac11c-0001-012"

]
}

},
{

"op":"=",
"content": {

"field":"junction_aa",
"value":"CARDPRSYHAFDIW"

}
}

]
},
"fields":["repertoire_id","sequence_id","v_call","productive"],
"format":"tsv"

}

Query Example 2

What human full length IgH sequences have been found in patients with an autoimmune diagnosis.

14 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

• TO BE WRITTEN

Query Example 3

What is the antibody IG heavy chain V usage in people who have diabetes?

• TO BE WRITTEN

Query Example 4

Give me all the anti-HIV antibody sequences that use IGHV1-69 in HIV infected individuals?

• TO BE WRITTEN

Query Example 5

Repertoires from cancer patients where we have pre- and post-immunotherapy peripheral blood (or tumor biopsy).

• TO BE WRITTEN

Query Example 6

Return TCRs that score highly on a position weight matrix from subjects with a particular HLA allele that have been
infected with TB.

• TO BE WRITTEN

Query Example 7

Repertoires from female patients with cancer.

• TO BE WRITTEN

2.2 Release Notes

2.2.1 Schema Release Notes

Version 1.3.1: October 13, 2020

Version 1.3 documentation patch release.

Alignment Schema:

1. Added the deprecation tags for rearrangement_id, which were accidentally left out of the v1.3.0 release.

2.2. Release Notes 15

airr-standards Documentation, Release 1.3

Version 1.3.0: May 28, 2020

Version 1.3 schema release.

New Schema:

1. Introduced the Repertoire Schema for describing study meta data.

2. Introduced the PCRTarget Schema for describing primer target locations.

3. Introduced the SampleProcessing Schema for describing experimental processing steps for a sample.

4. Replaced the SoftwareProcessing schema with the DataProcessing schema.

5. Introduced experimental schema for clonal clusters, lineage trees, tree nodes, and cells as Clone, Tree, Node,
and Cell objects, respectively.

General Updates:

1. Added multiple additional attributes to a large number of schema propertes as AIRR extension attributes in the
x-airr field. The new Attributes object contains definitions for these x-airr field attributes.

2. Added the top level required property to all relevant schema objects.

3. Added the title attribute containing the short, descriptive name to all relevant schema object fields.

4. Added an example attribute containing an example data value to multiple schema object fields.

AIRR Data Commons API:

1. Added OpenAPI V2 specification (specs/adc-api.yaml) for AIRR Data Commons API major version 1.

Ontology Support:

1. Added Ontology and CURIEResolution objects to support ontologies.

2. Added vocabularies/ontologies as JSON string for: Cell subset, Target substrate, Library generation method,
Complete sequences, Physical linkage of different loci.

Rearrangement Schema:

1. Added the complete_vdj field to annotate whether a V(D)J alignment was full length.

2. Added the junction_length_aa field defining the length of the junction amino acid sequence.

3. Added the repertoire_id, sample_processing_id, and data_processing_id fields to serve as
linkers to the appropriate metadata objects.

4. Added a controlled vocabulary to the locus field: IGH, IGI, IGK, IGL, TRA, TRB, TRD, TRG.

5. Deprecated the rearrangement_set_id and germline_database fields.

6. Deprecated rearrangement_id field and made the sequence_id field be the primary unique identifer
for a rearrangement record, both in files and data repositories.

7. Added support secondary D gene rearrangement through the additional fields: d2_call,
d2_score, d2_identity, d2_support, d2_cigar np3, np3_aa, np3_length,
n3_length, p5d2_length, p3d2_length, d2_sequence_start, d2_sequence_end,
d2_germline_start, d2_germline_start, d2_alignment_start, d2_alignment_end,
d2_sequence_alignment, d2_sequence_alignment_aa, d2_germline_alignment,
d2_germline_alignment_aa.

8. Updated field definitions with more concise V(D)J call descriptions.

Alignment Schema:

1. Deprecated the rearrangement_set_id and germline_database fields.

16 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

2. Added the data_processing_id field.

Study Schema:

1. Added the study_type field containing an ontology defined term for the study design.

Subject Schema:

1. Deprecated the organism field in favor of the new species field.

2. Deprecated the age field.

3. Introduced age ranges: age_min, age_max, and age_unit.

Diagnosis Schema:

1. Changed the type of the disease_diagnosis field from string to Ontology.

Sample Schema:

1. Changed the type of the tissue field from string to Ontology.

CellProcessing Schema:

1. Changed the type of the cell_subset field from string to Ontology.

2. Introduced the cell_species field which denotes the species from which the analyzed cells originate.

NucleicAcidProcessing Schema:

1. Defined the template_class field as type string.

2. Added a controlled vocabulary the library_generation_method field.

3. Changed the controlled vocabulary terms of complete_sequences. Replacing complete &
untemplated with complete+untemplated and adding mixed.

4. Added the pcr_target field referencing the new PCRTarget schema object.

SequencingRun Schema:

1. Added the sequencing_run_id field which serves as the object identifer field.

2. Added the sequencing_files field which links to the RawSequenceData schema objects defining the raw
read data.

RawSequenceData Schema:

1. Added the file_type field defining the sequence file type. This field is a controlled vocabulary restricted to:
fasta, fastq.

2. Added the paired_read_length field defining mate-pair read lengths.

3. Defined the read_direction and paired_read_direction fields as type string.

DataProcessing Schema:

1. Replaces the SoftwareProcessing object.

2. Added data_processing_id, primary_annotation, data_processing_files,
germline_database and analysis_provenance_id fields.

Version 1.2.1: Oct 5, 2018

Minor patch release.

1. Schema gene vs segment terminology corrections

2.2. Release Notes 17

airr-standards Documentation, Release 1.3

2. Added Info object

3. Updated cell_subset URL in AIRR schema

Version 1.2.0: Aug 18, 2018

Peer reviewed released of the Rearrangement schema.

1. Definition change for the coordinate fields of the Rearrangement and Alignment schema. Coordinates are now
defined as 1-based closed intervals, instead of 0-based half-open intervals (as previously defined in v1.1 of the
schema).

2. Removed foreign study_id fields

3. Introduced keywords_study field

Version 1.1.0: May 3, 2018

Initial public released of the Rearrangement and Alignment schemas.

1. Added required and nullable constrains to AIRR schema.

2. Schema definitions for MiAIRR attributes and ontology.

3. Introduction of an x-airr object indicating if field is required by MiAIRR.

4. Rename rearrangement_set_id to data_processing_id.

5. Rename study_description to study_type.

6. Added physical_quantity format.

7. Raw sequencing files into separate schema object.

8. Rename Attributes object.

9. Added primary_annotation and repertoire_id.

10. Added diagnosis to repertoire object.

11. Added ontology for organism.

12. Added more detailed specification of sequencing_run, repertoire and rearrangement.

13. Added repertoire schema.

14. Rename definitions.yaml to airr-schema.yaml.

15. Removed c_call, c_score and c_cigar from required as this is not typical reference aligner output.

16. Renamed vdj_score, vdj_identity, vdj_evalue, and vdj_cigar to score, identity,
evalue, and cigar.

17. Added missing c_identity and c_evalue fields to Rearrangement spec.

18. Swapped order of N and S operators in CIGAR string.

19. Some description clean up for consistency in Rearrangement spec.

20. Remove repeated objects in definitions.yaml.

21. Added Alignment object to definitions.yaml.

22. Updated MiARR format consistency check TSV with junction change.

23. Changed definition from functional to productive.

18 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Version 1.0.1: Jan 9, 2018

MiAIRR v1 official release and initial draft of Rearrangement and Alignment schemas.

2.2.2 Python Library Release Notes

Version 1.3.1: October 13, 2020

1. Refactored merge_rearrangement to allow for larger number of files.

2. Improved error handling in format validation operations.

Version 1.3.0: May 30, 2020

1. Updated schema set to v1.3.

2. Added load_repertoire, write_repertoire, and validate_repertoire to airr.
interface to read, write and validate Repertoire metadata, respectively.

3. Added repertoire_template to airr.interface which will return a complete repertoire object
where all fields have null values.

4. Added validate_object to airr.schema that will validate a single repertoire object against the schema.

5. Extended the airr-tools commandline program to validate both rearrangement and repertoire files.

Version 1.2.1: October 5, 2018

1. Fixed a bug in the python reference library causing start coordinate values to be empty in some cases when
writing data.

Version 1.2.0: August 17, 2018

1. Updated schema set to v1.2.

2. Several improvements to the validate_rearrangement function.

3. Changed behavior of all airr.interface functions to accept a file path (string) to a single Rearrangement TSV,
instead of requiring a file handle as input.

4. Added base argument to RearrangementReader and RearrangementWriter to support optional
conversion of 1-based closed intervals in the TSV to python-style 0-based half-open intervals. Defaults to
conversion.

5. Added the custom exception ValidationError for handling validation checks.

6. Added the validate argument to RearrangementReader which will raise a ValidationError ex-
ception when reading files with missing required fields or invalid values for known field types.

7. Added validate argument to all type conversion methods in Schema, which will now raise a
ValidationError exception for value that cannot be converted when set to True. When set False (de-
fault), the previous behavior of assigning None as the converted value is retained.

8. Added validate_header and validate_row methods to Schema and removed validations methods
from RearrangementReader.

9. Removed automatic closure of file handle upon reaching the iterator end in RearrangementReader.

2.2. Release Notes 19

airr-standards Documentation, Release 1.3

Version 1.1.0: May 1, 2018

Initial release.

2.2.3 R Library Release Notes

Version 1.3.0: May 26, 2020

1. Updated schema set to v1.3.

2. Added info slot to Schema object containing general schema information.

Version 1.2.0: August 17, 2018

1. Updated schema set to v1.2.

2. Changed defaults to base="1" for read and write functions.

3. Updated example TSV file with coordinate changes, addition of germline_alignment data and simplifica-
tion of sequence_id values.

Version 1.1.0: May 1, 2018

Initial release.

2.3 AIRR Standards

Information about all of the AIRR Community standards.

2.3.1 Introduction to MiAIRR

Summary

One of the primary initiatives of the Adaptive Immune Receptor Repertoire (AIRR) Community has been to develop
a set of metadata standards for the submission of AIRR sequencing datasets. This work has been carried out by the
AIRR Community Minimal Standards Working Group. In order to support reproducibility, standard quality control,
and data deposition in a common repository, the AIRR Community has agreed to six high-level data sets that will
guide the publication, curation and sharing of AIRR-Seq data and metadata: Study and subject, sample collection,
sample processing and sequencing, raw sequences, processing of sequence data, and processed AIRR sequences. The
detailed data elements within these sets are defined here (Download as TSV).

Topics

MiAIRR Data Elements

The AIRR Community has agreed to six high-level data sets that will guide the publication, curation and sharing
of AIRR-Seq data and metadata: Study and subject, sample collection, sample processing and sequencing, raw se-
quences, processing of sequence data, and processed AIRR sequences.

Download as TSV.

20 Chapter 2. Table of Contents

http://airr-community.org/working_groups/minimal_standards

airr-standards Documentation, Release 1.3

Fig. 4: Schema of MiAIRR data sets and the individual data elements of each set.

Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
study

Study ID
study_id

string free text important Unique ID assigned by study
registry

PRJNA001

1 /
study

Study title
study_title

string free text important Descriptive study title Effects of sun light
exposure of the Treg
repertoire

1 /
study

Study type
study_type

Ontology
Ontology: {
top_node:
{ id:
NCIT:C63536,
value:
Study}}

important Type of study design id: NCIT:C15197,
value: Case-Control
Study

1 /
study

Study inclu-
sion/exclusion
criteria
inclusion_exclusion_criteria

string free text important List of criteria for inclu-
sion/exclusion for the study

Include: Clinical
P. falciparum in-
fection; Exclude:
Seropositive for
HIV

1 /
study

Grant fund-
ing agency
grants

string free text important Funding agencies and grant
numbers

NIH, award number
R01GM987654

Continued on next page

2.3. AIRR Standards 21

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
study

Contact infor-
mation (data
collection)
collected_by

string free text important Full contact information of the
data collector, i.e. the person
who is legally responsible for
data collection and release. This
should include an e-mail ad-
dress.

Dr. P. Stibbons,
p.stibbons@unseenu.edu

1 /
study

Lab name
lab_name

string free text important Department of data collector Department for Pla-
nar Immunology

1 /
study

Lab address
lab_address

string free text important Institution and institutional ad-
dress of data collector

School of Medicine,
Unseen University,
Ankh-Morpork,
Disk World

1 /
study

Contact infor-
mation (data
deposition)
submitted_by

string free text important Full contact information of the
data depositor, i.e. the person
submitting the data to a repos-
itory. This is supposed to be
a short-lived and technical role
until the submission is relased.

Adrian Turnipseed,
a.turnipseed@unseenu.edu

1 /
study

Relevant
publications
pub_ids

string free text important Publications describing the ra-
tionale and/or outcome of the
study

PMID:85642

1 /
study

Keywords
for study
keywords_study

array of string
Controlled
vocabu-
lary: con-
tains_ig, con-
tains_tcr, con-
tains_single_cell,
con-
tains_paired_chain

important Keywords describing properties
of one or more data sets in a
study

[‘contains_ig’,
‘con-
tains_paired_chain’]

1 /
sub-
ject

Subject ID
subject_id

string free text important Subject ID assigned by submit-
ter, unique within study

SUB856413

1 /
sub-
ject

Synthetic
library
synthetic

boolean true |
false

essential TRUE for libraries in which the
diversity has been synthetically
generated (e.g. phage display)

1 /
sub-
ject

Organism
species

Ontology
Ontology: {
top_node:
{ id:
NCBITAXON:7776,
value:
Gnathos-
tomata}}

essential Binomial designation of sub-
ject’s species

id:
NCBITAXON:9606,
value: Homo sapi-
ens

Continued on next page

22 Chapter 2. Table of Contents

mailto:p.stibbons@unseenu.edu
mailto:a.turnipseed@unseenu.edu

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
sub-
ject

Sex sex string Con-
trolled vo-
cabulary:
male, fe-
male, pooled,
hermaphrodite,
intersex, not
collected, not
applicable

important Biological sex of subject female

1 /
sub-
ject

Age minimum
age_min

number posi-
tive number

important Specific age or lower boundary
of age range.

60

1 /
sub-
ject

Age max-
imum
age_max

number posi-
tive number

important Upper boundary of age range
or equal to age_min for specific
age. This field should only be
null if age_min is null.

80

1 /
sub-
ject

Age unit
age_unit

Ontology
Ontology: {
top_node:
{ id:
UO:0000003,
value: time
unit}}

important Unit of age range id: UO:0000036,
value: year

1 /
sub-
ject

Age event
age_event

string free text important Event in the study schedule to
which Age refers. For NCBI
BioSample this MUST be sam-
pling. For other implemen-
tations submitters need to be
aware that there is currently no
mechanism to encode to poten-
tial delta between Age event and
Sample collection time, hence
the chosen events should be in
temporal proximity.

enrollment

1 /
sub-
ject

Ancestry
population
ancestry_population

string free text important Broad geographic origin of an-
cestry (continent)

list of continents,
mixed or unknown

1 /
sub-
ject

Ethnicity
ethnicity

string free text important Ethnic group of subject (de-
fined as cultural/language-based
membership)

English, Kurds,
Manchu, Yakuts
(and other fields
from Wikipedia)

1 /
sub-
ject

Race race string free text important Racial group of subject (as de-
fined by NIH)

White, American
Indian or Alaska
Native, Black,
Asian, Native
Hawaiian or Other
Pacific Islander,
Other

Continued on next page

2.3. AIRR Standards 23

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
sub-
ject

Strain name
strain_name

string free text important Non-human designation of the
strain or breed of animal used

C57BL/6J

1 /
sub-
ject

Relation to
other subjects
linked_subjects

string free text important Subject ID to which Relation
type refers

SUB1355648

1 /
sub-
ject

Relation type
link_type

string free text important Relation between subject and
linked_subjects, can be genetic
or environmental (e.g.exposure)

father, daughter,
household

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Study group
description
study_group_description

string free text important Designation of study arm to
which the subject is assigned to

control

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Diagnosis
disease_diagnosis

Ontology
Ontology: {
top_node: {
id: DOID:4,
value: dis-
ease}}

important Diagnosis of subject id: DOID:9538,
value: multiple
myeloma

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Length of
disease
disease_length

string free text important Time duration between initial
diagnosis and current interven-
tion

23 months

Continued on next page

24 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Disease stage
disease_stage

string free text important Stage of disease at current inter-
vention

Stage II

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Prior thera-
pies for pri-
mary disease
under study
prior_therapies

string free text important List of all relevant previous ther-
apies applied to subject for treat-
ment of Diagnosis

melphalan/prednisone

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Immunogen/agent
immunogen

string free text important Antigen, vaccine or drug ap-
plied to subject at this interven-
tion

bortezomib

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Intervention
definition
intervention

string free text important Description of intervention systemic
chemotherapy,
6 cycles, 1.25
mg/m2

Continued on next page

2.3. AIRR Standards 25

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

1 /
di-
ag-
no-
sis
and
in-
ter-
ven-
tion

Other rele-
vant med-
ical history
medical_history

string free text important Medical history of subject that is
relevant to assess the course of
disease and/or treatment

MGUS, first diag-
nosed 5 years prior

2 /
sam-
ple

Biological
sample ID
sample_id

string free text important Sample ID assigned by submit-
ter, unique within study

SUP52415

2 /
sam-
ple

Sample type
sample_type

string free text important The way the sample was ob-
tained, e.g. fine-needle aspirate,
organ harvest, peripheral venous
puncture

Biopsy

2 /
sam-
ple

Tissue
tissue

Ontology
Ontology: {
top_node:
{ id:
UBERON:0010000,
value: mul-
ticellular
anatomical
structure}}

important The actual tissue sampled, e.g.
lymph node, liver, peripheral
blood

id:
UBERON:0002371,
value: bone marrow

2 /
sam-
ple

Anatomic site
anatomic_site

string free text important The anatomic location of the tis-
sue, e.g. Inguinal, femur

Iliac crest

2 /
sam-
ple

Disease state
of sample
disease_state_sample

string free text important Histopathologic evaluation of
the sample

Tumor infiltration

2 /
sam-
ple

Sample col-
lection time
collection_time_point_relative

string free text important Time point at which sample was
taken, relative to Collection time
event

14 d

2 /
sam-
ple

Collection
time event
collection_time_point_reference

string free text important Event in the study schedule to
which Sample collection time
relates to

Primary vaccination

2 /
sam-
ple

Biomaterial
provider
biomaterial_provider

string free text important Name and address of the entity
providing the sample

Tissues-R-Us,
Tampa, FL, USA

3 /
pro-
cess
(cell)

Tissue pro-
cessing
tissue_processing

string free text important Enzymatic digestion and/or
physical methods used to isolate
cells from sample

Collagenase
A/Dnase I di-
gested, followed by
Percoll gradient

Continued on next page

26 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(cell)

Cell subset
cell_subset

Ontology
Ontology: {
top_node:
{ id:
CL:0000542,
value: lym-
phocyte}}

important Commonly-used designation of
isolated cell population

id: CL:0000972,
value: class
switched mem-
ory B cell

3 /
pro-
cess
(cell)

Cell sub-
set phenotype
cell_phenotype

string free text important List of cellular markers and their
expression levels used to isolate
the cell population

CD19+ CD38+
CD27+ IgM- IgD-

3 /
pro-
cess
(cell)

Cell species
cell_species

Ontology
Ontology: {
top_node:
{ id:
NCBITAXON:7776,
value:
Gnathos-
tomata}}

defined Binomial designation of the
species from which the ana-
lyzed cells originate. Typi-
cally, this value should be iden-
tical to species, if which case
it SHOULD NOT be set explic-
itly. Howver, there are valid ex-
perimental setups in which the
two might differ, e.g. chimeric
animal models. If set, this key
will overwrite the species infor-
mation for all lower layers of the
schema.

id:
NCBITAXON:9606,
value: Homo sapi-
ens

3 /
pro-
cess
(cell)

Single-
cell sort
single_cell

boolean true |
false

important TRUE if single cells were iso-
lated into separate compart-
ments

3 /
pro-
cess
(cell)

Number
of cells in
experiment
cell_number

integer posi-
tive integer

important Total number of cells that went
into the experiment

1000000

3 /
pro-
cess
(cell)

Number of
cells per
sequenc-
ing reaction
cells_per_reaction

integer posi-
tive integer

important Number of cells for each biolog-
ical replicate

50000

3 /
pro-
cess
(cell)

Cell storage
cell_storage

boolean true |
false

important TRUE if cells were cryo-
preserved between isolation and
further processing

True

3 /
pro-
cess
(cell)

Cell quality
cell_quality

string free text important Relative amount of viable cells
after preparation and (if applica-
ble) thawing

90% viability as de-
termined by 7-AAD

Continued on next page

2.3. AIRR Standards 27

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(cell)

Cell isolation
/ enrichment
procedure
cell_isolation

string free text important Description of the procedure
used for marker-based isolation
or enrich cells

Cells were stained
with fluorochrome
labeled antibodies
and then sorted on
a FlowMerlin (CE)
cytometer.

3 /
pro-
cess
(cell)

Processing
protocol
cell_processing_protocol

string free text important Description of the meth-
ods applied to the sample
including cell preparation/ iso-
lation/enrichment and nucleic
acid extraction. This should
closely mirror the Materials
and methods section in the
manuscript.

Stimulated wih anti-
CD3/anti-CD28

3 /
pro-
cess
(nu-
cleic
acid)

Target
substrate
template_class

string Con-
trolled vocab-
ulary: DNA,
RNA

essential The class of nucleic acid that
was used as primary starting
material for the following pro-
cedures

RNA

3 /
pro-
cess
(nu-
cleic
acid)

Target sub-
strate quality
template_quality

string free text important Description and results of the
quality control performed on the
template material

RIN 9.2

3 /
pro-
cess
(nu-
cleic
acid)

Template
amount
template_amount

string free text important Amount of template that went
into the process

1000 ng

Continued on next page

28 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(nu-
cleic
acid)

Library gener-
ation method
library_generation_method

string Con-
trolled vocab-
ulary: PCR,
RT(RHP)+PCR,
RT(oligo-
dT)+PCR,
RT(oligo-
dT)+TS+PCR,
RT(oligo-
dT)+TS(UMI)+PCR,
RT(specific)+PCR,
RT(specific)+TS+PCR,
RT(specific)+TS(UMI)+PCR,
RT(specific+UMI)+PCR,
RT(specific+UMI)+TS+PCR,
RT(specific)+TS,
other

essential Generic type of library genera-
tion

RT(oligo-
dT)+TS(UMI)+PCR

3 /
pro-
cess
(nu-
cleic
acid)

Library gener-
ation protocol
library_generation_protocol

string free text important Description of processes ap-
plied to substrate to obtain a li-
brary that is ready for sequenc-
ing

cDNA was gener-
ated using

3 /
pro-
cess
(nu-
cleic
acid)

Protocol IDs
library_generation_kit_version

string free text important When using a library genera-
tion protocol from a commer-
cial provider, provide the proto-
col version number

v2.1 (2016-09-15)

Continued on next page

2.3. AIRR Standards 29

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(nu-
cleic
acid)

Complete
sequences
complete_sequences

string Con-
trolled vo-
cabulary:
partial, com-
plete, com-
plete+untemplated,
mixed

essential To be considered complete, the
procedure used for library con-
struction MUST generate se-
quences that 1) include the first
V gene codon that encodes the
mature polypeptide chain (i.e.
after the leader sequence) and 2)
include the last complete codon
of the J gene (i.e. 1 bp 5’
of the J->C splice site) and
3) provide sequence informa-
tion for all positions between 1)
and 2). To be considered com-
plete & untemplated, the sec-
tions of the sequences defined
in points 1) to 3) of the previ-
ous sentence MUST be untem-
plated, i.e. MUST NOT overlap
with the primers used in library
preparation. mixed should only
be used if the procedure used for
library construction will likely
produce multiple categories of
sequences in the given experi-
ment. It SHOULD NOT be used
as a replacement of a NULL
value.

partial

Continued on next page

30 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(nu-
cleic
acid)

Physical
linkage of
different re-
arrangements
physical_linkage

string Con-
trolled vocab-
ulary: none,
hetero_head-
head,
hetero_tail-
head, het-
ero_prelinked

essential In case an experimental setup
is used that physically links nu-
cleic acids derived from dis-
tinct Rearrangements before li-
brary preparation, this field de-
scribes the mode of that link-
age. All hetero_* terms indicate
that in case of paired-read se-
quencing, the two reads should
be expected to map to distinct
IG/TR loci. *_head-head refers
to techniques that link the 5’
ends of transcripts in a single-
cell context. *_tail-head refers
to techniques that link the 3’ end
of one transcript to the 5’ end of
another one in a single-cell con-
text. This term does not provide
any information whether a con-
tinuous reading-frame between
the two is generated. *_pre-
linked refers to constructs in
which the linkage was already
present on the DNA level (e.g.
scFv).

hetero_head-head

3 /
pro-
cess
(nu-
cleic
acid
[pcr])

Target lo-
cus for PCR
pcr_target_locus

string Con-
trolled vocab-
ulary: IGH,
IGI, IGK,
IGL, TRA,
TRB, TRD,
TRG

important Designation of the target locus.
Note that this field uses a con-
trolled vocubulary that is meant
to provide a generic classifica-
tion of the locus, not necessarily
the correct designation accord-
ing to a specific nomenclature.

IGK

3 /
pro-
cess
(nu-
cleic
acid
[pcr])

Forward PCR
primer tar-
get location
forward_pcr_primer_target_location

string free text important Position of the most distal nu-
cleotide templated by the for-
ward primer or primer mix

IGHV, +23

3 /
pro-
cess
(nu-
cleic
acid
[pcr])

Reverse PCR
primer tar-
get location
reverse_pcr_primer_target_location

string free text important Position of the most proximal
nucleotide templated by the re-
verse primer or primer mix

IGHG, +57

Continued on next page

2.3. AIRR Standards 31

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

3 /
pro-
cess
(se-
quenc-
ing)

Batch number
sequencing_run_id

string free text important ID of sequencing run assigned
by the sequencing facility

160101_M01234

3 /
pro-
cess
(se-
quenc-
ing)

Total reads
passing
QC filter
total_reads_passing_qc_filter

integer posi-
tive integer

important Number of usable reads for
analysis

10365118

3 /
pro-
cess
(se-
quenc-
ing)

Sequencing
platform
sequencing_platform

string free text important Designation of sequencing in-
strument used

Alumina LoSeq
1000

3 /
pro-
cess
(se-
quenc-
ing)

Sequencing
facility
sequencing_facility

string free text important Name and address of sequenc-
ing facility

Seqs-R-Us, Vancou-
ver, BC, Canada

3 /
pro-
cess
(se-
quenc-
ing)

Date of se-
quencing run
sequencing_run_date

string free text important Date of sequencing run 2016-12-16

3 /
pro-
cess
(se-
quenc-
ing)

Sequencing
kit
sequencing_kit

string free text important Name, manufacturer, order and
lot numbers of sequencing kit

FullSeq 600,
Alumina,
#M123456C0,
789G1HK

4 /
data
(raw
reads)

Raw se-
quencing
data file type
file_type

string Con-
trolled vocab-
ulary: fasta,
fastq

important File format for the raw reads or
sequences

4 /
data
(raw
reads)

Raw se-
quencing data
file name
filename

string free text important File name for the raw reads
or sequences. The first file in
paired-read sequencing.

MS10R-NMonson-
C7JR9_S1_R1_001.fastq

Continued on next page

32 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

4 /
data
(raw
reads)

Read direction
read_direction

string Con-
trolled vo-
cabulary:
forward,
reverse, mixed

important Read direction for the raw reads
or sequences. The first file in
paired-read sequencing.

forward

4 /
pro-
cess
(se-
quenc-
ing)

Forward
read length
read_length

integer posi-
tive integer

important Read length in bases for the first
file in paired-read sequencing

300

4 /
data
(raw
reads)

Paired raw
sequencing
data file name
paired_filename

string free text important File name for the second file in
paired-read sequencing

MS10R-NMonson-
C7JR9_S1_R2_001.fastq

4 /
data
(raw
reads)

Paired read
direction
paired_read_direction

string Con-
trolled vo-
cabulary:
forward,
reverse, mixed

important Read direction for the second
file in paired-read sequencing

reverse

4 /
pro-
cess
(se-
quenc-
ing)

Paired
read length
paired_read_length

integer posi-
tive integer

important Read length in bases for the sec-
ond file in paired-read sequenc-
ing

300

5 /
pro-
cess
(com-
pu-
ta-
tional)

Software
tools and ver-
sion numbers
software_versions

string free text important Version number and / or date,
include company pipelines

IgBLAST 1.6

5 /
pro-
cess
(com-
pu-
ta-
tional)

Paired read
assembly
paired_reads_assembly

string free text important How paired end reads were as-
sembled into a single receptor
sequence

PandaSeq (minimal
overlap 50, thresh-
old 0.8)

5 /
pro-
cess
(com-
pu-
ta-
tional)

Quality
thresholds
quality_thresholds

string free text important How sequences were removed
from (4) based on base quality
scores

Average Phred score
>=20

Continued on next page

2.3. AIRR Standards 33

airr-standards Documentation, Release 1.3

Table 1 – continued from previous page
Set
/
Sub-
set

Designation /
Field

Type / For-
mat

Level Definition Example

5 /
pro-
cess
(com-
pu-
ta-
tional)

Primer match
cutoffs
primer_match_cutoffs

string free text important How primers were identified in
the sequences, were they re-
moved/masked/etc?

Hamming distance
<= 2

5 /
pro-
cess
(com-
pu-
ta-
tional)

Collapsing
method
collapsing_method

string free text important The method used for combining
multiple sequences from (4) into
a single sequence in (5)

MUSCLE 3.8.31

5 /
pro-
cess
(com-
pu-
ta-
tional)

Data process-
ing protocols
data_processing_protocols

string free text important General description of how QC
is performed

Data was processed
using [. . .]

5 /
data
(pro-
cessed
se-
quence)

V(D)J
germline
reference
database
germline_database

string free text important Source of germline V(D)J genes
with version number or date ac-
cessed.

ENSEMBL, Homo
sapiens build 90,
2017-10-01

MiAIRR-to-NCBI Implementation

Authors Christian E. Busse, Florian Rubelt and Syed Ahmad Chan Bukhari

Guide for submission of AIRR-seq data to NCBI

This site provides a detailed “how-to” guide for submission of AIRR-seq data to NCBI repositories (BioProject,
BioSample, SRA and GenBank). For other implementations of the MiAIRR standard see here.

One of the primary initiatives of the AIRR (Adaptive Immune Receptor Repertoire) Community has been to develop
a set of metadata standards for the submission of immune receptor repertoire sequencing datasets. This work has been
carried out by the AIRR Community Standards Working Group. In order to support reproducibility, standard quality
control, and data deposition in a common repository, the AIRR Community has agreed to six high-level data sets that
will guide the publication, curation and sharing of AIRR-Seq data and metadata: Study and subject, sample collection,
sample processing and sequencing, raw sequences, processing of sequence data, and processed AIRR sequences. The
detailed data elements within these sets are defined here (Download as TSV). The association between these AIRR
sets, the associated data elements, and each of the NCBI repositories is shown below:

Submission of AIRR sequencing data and metadata to NCBI’s public data repositories consists of five sequential steps:

34 Chapter 2. Table of Contents

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 1.3

1. Submit study information to NCBI BioProject using the NCBI web interface.

2. Submit sample-level information to the NCBI BioSample repository using the AIRR-BioSample templates.

3. Submit raw sequencing data to NCBI SRA using the AIRR-SRA data templates.

4. Generate a DOI for the protocol describing how raw sequencing data were processed using Zenodo.

5. Submit processed sequencing data with sequence-level annotations to GenBank using AIRR feature tags.

The submission manual provides step-by-step instructions on carrying out these steps for an AIRR study submission.

MiAIRR-to-NCBI Submission Manual

Scope of this document

Provide a user manual describing the submission of AIRR data using the NCBI reference implementation described
in [Rubelt_2017]. This implementation uses NCBI’s BioProject, BioSample, Sequence Read Archive (SRA) and
GenBank repositories and metadata standards to report AIRR data.

Step 1. MiAIRR data submission to BioProject, BioSample and SRA

Since we propose to include a combination of raw and processed sequence data, the AIRR standard will sometimes
need to be distributed and linked across multiple repositories (e.g., data in SRA linked to related data in GenBank).
Besides, the data elements that comprise the standard will be mapped to ontologies in BioPortal through NIH CDE
(Common Data Element) terms. These linkages will support more sophisticated validation and logical inference.

There are three main alternatives to submit raw AIRR data/metadata to NCBI repositories: (1) CEDAR’s CAIRR
pipeline; (2) NCBI’s Web interface; and (3) NCBI’s FTP server. These alternatives are described below:

2.3. AIRR Standards 35

https://submit.ncbi.nlm.nih.gov/subs/bioproject/
https://submit.ncbi.nlm.nih.gov/subs/biosample/
https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_BioSample_v1.0.xls
https://submit.ncbi.nlm.nih.gov/subs/sra/
https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_SRA_v1.0.xls
https://zenodo.org
https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/
https://doi.org/10.1038/ni.3873

airr-standards Documentation, Release 1.3

Option 1. Submission via the CEDAR system (CAIRR submission pipeline)

CEDAR’s CAIRR submission pipeline helps investigators and curators to edit and validate ontology-controlled meta-
data. This pipeline provides a seamless interface to transmit SRA datasets to the NCBI SRA and BioSample reposi-
tories from the CEDAR Workbench. The pipeline can be directly be accessed at http://cairr.airr-community.org. Note
that the CEDAR template and template elements used by this pipeline are publicly available in the following CEDAR
folder: All/Shared/Shared by CEDAR/MiAIRR.

Submission steps:

1. Open CEDAR’s MiAIRR template by clicking on http://cairr.airr-community.org. If you are not already logged
in, this will take you to the CEDAR login panel. If you are a new user, you will have to create an account on the
CEDAR Workbench by clicking here.

2. After logging in into the system, you will see the ‘MiAIRR’ template. Fill out the template fields with your
metadata. Fields with an asterisk (*) are mandatory. Your submission will fail if any mandatory fields are not
completed. If information is unavailable for any mandatory field, please enter ‘not collected’, ‘not applicable’
or ‘missing’ as appropriate. Note that you will need to enter a BioProject ID into the field ‘Study ID’. If you do
not have a BioProject yet, you can create one at https://submit.ncbi.nlm.nih.gov/subs/bioproject/

36 Chapter 2. Table of Contents

https://cedar.metadatacenter.org
https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933
https://cedar.metadatacenter.org/dashboard?folderId=https:%2F%2Frepo.metadatacenter.org%2Ffolders%2F4e5ce935-03ea-401a-804c-c38160c560f2
https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933
https://auth.metadatacenter.org/auth/realms/CEDAR/login-actions/registration?client_id=cedar-angular-app

airr-standards Documentation, Release 1.3

3. Once your metadata is complete, click on the ‘Save’ button to save your metadata into your workspace. You will
see a message in a green box confirming that your metadata have been successfully saved, as well as a message
in a yellow box letting you know that your metadata have been saved to your personal workspace.

2.3. AIRR Standards 37

airr-standards Documentation, Release 1.3

4. Go to your personal workspace by clicking on the left arrow (top left corner) and then on the ‘Workspace’ link,
or by just clicking on: https://cedar.metadatacenter.org

5. Once in your workspace, you will see a metadata file called ‘MiAIRR metadata’. That file contains the metadata
that you have just created and that you want to submit to the NCBI. Click on the three vertical dots on the
top-right corner of the file icon to see the available file options.

38 Chapter 2. Table of Contents

https://cedar.metadatacenter.org

airr-standards Documentation, Release 1.3

6. Click on the ‘Submit’ option to open the submission dialog.

2.3. AIRR Standards 39

airr-standards Documentation, Release 1.3

7. The ‘NCBI MiAIRR’ option will be automatically selected. Click on ‘Next’ to go to the next step.

40 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

8. Click on the ‘Select Files’ button to upload the data files. Note that the names of the selected files must match
the names in the metadata file. Otherwise, you will receive an error message when trying to start the submission.

2.3. AIRR Standards 41

airr-standards Documentation, Release 1.3

9. Click on the ‘Submit’ button to start the submission. If there are not validation errors, the selected data files and
the corresponding metadata will be uploaded to the NCBI servers.

42 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

10. Note that the submission may take several hours or even days to be processed by the NCBI. Meanwhile, you
will receive status messages about your submission in your workspace (messages icon).

2.3. AIRR Standards 43

airr-standards Documentation, Release 1.3

11. Proceed with deposit of processed data, below.

Citing the CAIRR pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L. Egyedi, Debra Debra Willrett,
John Graybeal, Mark A. Musen, Florian Rubelt, Kei H. Cheung, and Steven H. Kleinstein. The CAIRR pipeline
for submitting standards-compliant B and T cell receptor repertoire sequencing studies to the NCBI. Frontiers in
Immunology 9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877

Tell Us About It

Please let us know how it went! If you are willing, we would love to have your comments in a short survey, it should
just take 5 minutes or so. We also welcome entry of issues and requests in our GitHub repository, and emails can be
sent to cedar-users@lists.stanford.edu. Both of these resources are publicly visible.

Support or Contact

Having trouble with NCBI submission process through our pipeline? Please email to Syed Ahmad Chan Bukhari or
to Marcos Martínez-Romero and we will help you sort it out.

44 Chapter 2. Table of Contents

https://www.ncbi.nlm.nih.gov/pubmed/30166985
https://www.ncbi.nlm.nih.gov/pubmed/30166985
https://www.surveymonkey.com/r/your-metadata-experience
https://github.com/metadatacenter/cedar-project/issues
mailto:cedar-users@lists.stanford.edu
mailto:ahmad.chan@yale.edu
mailto:marcosmr@stanford.edu

airr-standards Documentation, Release 1.3

Option 2. Submission via NCBI’s web interface

To facilitate AIRR data submissions to NCBI repositories, we have developed the NCBI-compliant metadata submis-
sion templates both for single and bulk AIRR data submissions. NCBI provides a web-based interface to create a
BioProject and allows to BioSample, Sequence Read Archive (SRA) and GenBank metadata via tab-delimited files
for single BioProject related data files submission.

Submitting AIRR data and associated metadata to the Bioproject, BioSample and SRA repositories via NCBI’s web
interface follows in general the submission procedure described in [NCBI_NBK47528], but uses AIRR-specific tem-
plate for metadata submission:

1. Go to https://submit.ncbi.nlm.nih.gov/subs/sra/ and login with your NCBI account (create an account if neces-
sary).

2. Click on “create new submission”. You will see a form as below. Fill the form with required information and
click on “continue”.

3. If you are submitting for the first time, check “Yes” on the “new BioProject” or “new BioSample” options to
create a new project or sample, respectively.

2.3. AIRR Standards 45

https://www.ncbi.nlm.nih.gov/books/NBK47528/
https://submit.ncbi.nlm.nih.gov/subs/sra/

airr-standards Documentation, Release 1.3

4. Fill in the project information. Add as much relevant information you can add in description. It will help later
in searching the particular submission.

5. The AIRR BioSample template is not yet listed on the NCBI website. The template sheet
AIRR_BioSample_V1.0.xls can be downloaded from https://github.com/airr-community/airr-standards/
tree/master/NCBI_implementation/templates_XLS. Fill in the required field and save the file as tab-delimited
text file (.TSV format), then upload it.

6. To submit the SRA metadata use the AIRR_SRA_v1.0.xls file. Make sure that the column sample_name
uses sample names that match the record in the BioSample template (if new BioSamples are being submitted)
or a previously entered record. Also this file must be saved as tab-delimited text file for upload.

7. Submit the raw sequence file.

8. Complete the submission.

9. Proceed with deposit of processed data, below.

Option 3. Submission via NCBI’s FTP server, using a predefined XML template

In addition to the web interface, NCBI provides an FTP-based solution to submit bulk metadata. The corre-
sponding AIRR XML templates can be found under https://github.com/airr-community/airr-standards/tree/master/
NCBI_implementation/templates_XLS. Otherwise users should refer to the current SRA file upload manual https:
//www.ncbi.nlm.nih.gov/sra/docs/submitfiles/. Users planning to frequently submit AIRR-seq data to SRA using
scripts to generate the XML files MUST ensure that the templates are identical to the current upstream version on
Github.

Step 2. Processed MiAIRR data submission to GenBank/TLS

Processed sequence data will be submitted to the “Targeted Locus Study” (TLS) section of GenBank. The details
of this submission process are currently still being finalized. Basically the procedure is identical to a conventional
GenBank submission with the exception of additional keywords marking it as TLS submission.

Non-productive records should be removed before the data submission or use an alternative annotation as described in
the specification document.

46 Chapter 2. Table of Contents

https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/

airr-standards Documentation, Release 1.3

• Generating MiAIRR compliant GenBank/TLS submissions: https://changeo.readthedocs.io/en/stable/examples/
genbank.html

GenBank provides multiple tools (GUI and command-line) to submit data:

• BankIt, a web-based submission tool with wizards to guide the submission process

• Sequin, NCBI’s stand-alone submission tool with wizards to guide the submission process is available by FTP
for use on for Windows, macOS and Unix platforms.

• Tbl2asn is the recommended tool for the bulk data submission. It is a command-line program that automates the
creation of sequence records files (.sqn) for submission to GenBank, driven by multiple tabular unput data files.
Documentation and download options can be found under https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/.

MiAIRR-to-NCBI Specification

Outline of INSDC reporting procedure

TODO: Outline the reporting procedure for data sets 1-4

In terms of standard compliance it is currently REQUIRED1 to deposit information for MiAIRR data sets 5 and 6
in general-purpose sequence repositories for which an AIRR-accepted specification on information mapping MUST
exist. However, users should note that in the future additional AIRR-sanctioned mechanisms for data deposition
will become available as specified by the AIRR Common Repository Working Group. The mapping of data items in
MiAIRR data sets 5 and 6 differs substantially in size and structure and therefore requires distinct reporting procedures:

• Set 5: This is free text information describing the work flow, tools and parameters of the sequence read process-
ing. It is REQUIRED that this information is deposited as a freely available document, permanently linked via
a DOI. Note that is currently neither a specific format for this document nor a recommended service provider
for obtaining the DOI.

• Set 6: This is specified to contain the consensus sequence and the following information obtained from the initial
analysis: V, D and J segment, C region and IMGT-JUNCTION2 [LIGMDB_V12]. These will be deposited in a
general-purpose INSDC repository, using the record structure described below.

INSDC records were originally designed to hold individual Sanger sequences. Therefore each record will contain a
header with information largely identical between all records in an AIRR sequencing study. Records can be concate-
nated for uploading.

The INSDC feature table (FT) [INSDC_FT] is a sequence annotation standard used within the INSDC records and
assigns information to specified positions on the reported sequence string. In regard to the correct location of the
provided annotation, it should especially be noted that some V(D)J inference tools will return coordinates referring to
the reference instead of the query sequence. As the sequence submitted in a record MUST be identical to the query
sequence, the positions provided by the V(D)J inference tool MUST, if necessary, be translated back onto the query
sequence. In case the start and/or end of a feature cannot be reliably determined or is not present in the reported
sequence3, open intervals CAN be used for reporting. However, open intervals MUST NOT be used to deliberately
obfuscate known positions.

In addition to the required information specified in Table_1, users CAN use all valid FT keys/qualifiers to provide
further annotation for the reported sequences. However, a record MUST still be compliant with this specification, if
such OPTIONAL information would be removed, meaning that it is FORBIDDEN to move REQUIRED information
into OPTIONAL keys/qualifiers. In addition, users MUST NOT use keys/qualifiers that could create ambiguity with
the keys/qualifiers specified here.

1 See the “Glossary” section on how to interpret term written in all-caps.
2 Note that according to IMGT definition this is a superset of the CDR3.
3 This can occur e.g. in paired-end sequencing of head-to-head concatenated transcripts, where the 5’ end of the V segment is present in the

amplicon, but cannot be precisely determined.

2.3. AIRR Standards 47

https://changeo.readthedocs.io/en/stable/examples/genbank.html
https://changeo.readthedocs.io/en/stable/examples/genbank.html
https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/

airr-standards Documentation, Release 1.3

element FT key FT qualifier FT value REQUIRED (if used by original study)
V segment V_segment /gene see [Feature table] yes
D segment D_segment /gene see [Feature table] yes; if IGH, TRB or TRD sequence
J segment J_segment /gene see [Feature table] yes
C region C_region /gene see [Feature table] yes
JUNCTION CDS /function “JUNCTION” yes

Table 1: Summary of the mapping of mandatory AIRR MiniStd data set 6 elements to the INSDC feature table
(FT). Note that the overall record will contain additional information, such as cross-references linking the deposited
sequence reads and metadata.

Element mapping

The broad strategy of element mapping to the various repositories is depicted in Table_2.

MiAIRR data set / subset target repository
1 / study BioProject
1 / subject
1 / diagnosis & treatment
2 / sample BioSample
3 / processing (cells)
3 / processing (nucleic acids) SRA
4 / raw sequences
5 / processing (data) user-defined DOI
6 / Processed sequences & annotations Genbank

Table 2: Summary of the mapping of MiAIRR data sets to the various repositories

Mapping of data sets 1-4 to BioProject/BioSample/SRA

TODO: Include item-by-item mapping [NCBI_NBK47528]

Mapping of data set 5 to a user-defined repository

While several mandatory item have been defined in this data set, there is currently no mapping as the reporting proce-
dure is implemented as a free text document. AIRR RECOMMENDS to use Zenodo for deposition of these documents,
as it is hosted by CERN and supports versioned DOIs (termed “concept” DOI). Users SHOULD use the existing AIRR
tag when submitting documents to increase the visiblity of their study.

Mapping of data set 6 to INSDC

Users should note that while the FT is standardized, the overall sequence record structure diverges between the three
INSDC repositories. The following section refers to items at or above the hierarchy level of the FT using the GenBank
specification [GENBANK_FF], the corresponding designations of ENA [ENA_MANUAL] are provided in parenthe-
sis11.

11 Note that there is currently no submission specification for ENA. This information is provided for reference only and will be moved to a
separate document in the future.

48 Chapter 2. Table of Contents

https://zenodo.org
https://zenodo.org/communities/airr

airr-standards Documentation, Release 1.3

Record header

The header MUST contain all of the following elements:

• REQUIRED: header structure as specified by the respective INSDC repository [ENA_MANUAL]
[GENBANK_FF] [GENBANK_SR].

• FORBIDDEN: The DEFINITION entry will be autopopulated by information provided in the FT part
(misc_feature, /note).

• REQUIRED: identifier of the associated SRA record (MiAIRR data set 4) as DBLINK (ENA: DR line). Note
that it is not possible to refer to individual raw reads, only the full SRA collections can be linked.

• REQUIRED: in the KEYWORDS field (ENA: KW line):

– the term “TLS”

– the term “Targeted Locus Study”

– the term “AIRR”

– the term “MiAIRR:<x>.<y>” with <x> and <y> indicating the used version and subversion of the MiAIRR
standard.

• REQUIRED: DOI of the associated free-text record containing the information on data processing (MiAIRR
data set 5) as REMARK within a REFERENCE4 (ENA: RX line).

• OPTIONAL: The use of structured comments is currently evalutated for use in future versions of the MiAIRR
standard.

Feature table

The feature table, indicated by FEATURES (ENA: RX line), MUST or SHOULD contain the following keys/qualifiers:

General sequence information

• REQUIRED: key source containing the following qualifiers:

– REQUIRED: qualifier /organism (required by [INSDC_FT]).

– REQUIRED: qualifier /mol_type (required by [INSDC_FT]).

– REQUIRED: qualifier /citation pointing to the reference in the header (REFERENCE, ENA: RN line)
that links to the data set 5 document.

– REQUIRED: qualifier /rearranged5.

– REQUIRED: qualifier /note containing the AIRR_READ_COUNT keyword to indicate the read number
used for the consensus. The criteria for selecting these reads and the procedure used to build the consensus
SHOULD be reported as part of data set 5.

– OPTIONAL: qualifier /note containing the AIRR_INDEX_CELL keyword for single-cell experiments.
The value of the keyword SHOULD only contain alpha-numeric characters and MUST be identical for
sequences derived from the same cell of origin.

4 The current GenBank record specification does not include a separate key for DOIs.
5 Although FT does specify a /germline qualifier for non-rearranged sequences it has not been included in this specification as there is no

obvious use case for it. In addition, non-rearranged transcripts would lack a number of other features that are assumed to be present, first of all the
JUNCTION.

2.3. AIRR Standards 49

https://www.ncbi.nlm.nih.gov/genbank/structuredcomment/

airr-standards Documentation, Release 1.3

– RECOMMENDED: qualifiers /assembly_gap and /linkage_evidence to annotate non-
overlapping paired-end sequences.

– RECOMMENDED: qualifier /strain, if /organism is “Mus musculus”.

Note that additional qualifiers might be REQUIRED by GenBank to harmonize the GenBank record with the BioSam-
ple referenced by it in the header. A list of known BioSample keyword and GenBank qualifiers that MUST contain
the same information can be found below. Whether (and in which direction) the existence of a keyword/qualifiers trig-
gers a requirement in the corresponding record is currently unknown. Please report any undocumented requirements
surfacing during submission to the MiAIRR team.

BioSample keyword GenBank FT qualifier
cell type /cell_type
isolate /isolate
sex /sex
tissue /tissue_type

Segment and region annotation

The following keys MUST be used for annotation according to their FT definition, if the respective item has been
reported by the original study:

• REQUIRED: key V_region. Note that this key MUST NOT be used to annotate V segment leader sequence67.

• REQUIRED: key misc_feature with coordinates identical to those given in V_region. This key MUST
contain a /note qualifier that contains a string as value, which describes the general type of variable region
described by the record. The string MUST match the regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain
→˓variable region$/

This string will be used as record heading upon import into Genbank. Note that while this behavior of Genbank
is undocumented, the procedure has been approved by NCBI.

• REQUIRED: key V_segment, both coordinates MUST be within V_region. Note that this key MUST NOT
be used to annotate V segment leader sequence67.

• REQUIRED: key D_segment, both coordinates MUST be within V_region. This key is only REQUIRED
for sequences of applicable loci (IGH, TRB, TRD8). In the rare case of rearrangements using two D segments,
this key SHOULD occur twice, but the coordinates of both keys MUST NOT overlap.

• REQUIRED: key J_segment, both coordinates MUST be within V_region.

• REQUIRED: key C_region, both coordinates MUST NOT overlap with V_region. If the region can be
unambiguously identified, the respective official gene symbol MUST be reported using the /gene qualifier. If
only the isotype (e.g. IgG) but not the subclass (e.g. IgG1) can be identified, a truncated gene symbol (e.g.
IGHG instead of IGHG1) SHOULD be reported instead9.

Each [VDJ]_segment key MUST or SHOULD contain the following qualifiers:

6 The FT explicitly states that V_segment does not cover the leader sequence. The definition of V_region is slightly more ambiguous, however
in combination with the V_segment definition, it becomes clear that the leader is also not considered to be a part of V_region. Therefore the leader
sequence should be implicitly annotated as the region between the start of CDS and the start of V_region.

7 Previously the leader was implicitly annotated as the region between CDS start and V_region start. As it was decided to drop the “global” CDS
to make it easier to accommodate for INDELs, this is currently not an option anymore.

8 For simplicity, this document only uses human gene symbols. For non-human species the specification pertains to the respective orthologs.
9 This approach has been approved by NCBI.

50 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

• REQUIRED: qualifier /gene, containing the designation of the inferred segment, according to the database in
the first /db_xref entry. This qualifier MUST NOT contain any allele information.

• RECOMMENDED: qualifier /allele, containing the designation of the inferred allele, according to the
database in the first /db_xref entry. Note that while INSDC does not specify any format for this quali-
fier, AIRR compliance REQUIRES that this field only contains the allele string, i.e. without the gene name or
separator characters.

• REQUIRED: qualifier /db_xref, linking to the reference record of the inferred segment in a germline database
[INSDC_XREF]. This qualifier can be present multiple times, however only the first entry is mandatory and
MUST link to the database used for the segment designation given with /gene and (if present) /allele.

Note on referencing IMGT databases: There are two IMGT database available in the controlled vocabulary
[INSDC_XREF]:

– IMGT/GENE-DB: This is the genome database, which requires that a reference sequence has been mapped
to genomic DNA. When using this database as reference, note that you can only refer to the gene symbol
not the allele. In the case of ambiguous allele calls (see below) this means that you MUST NOT annotate
any /allele at all. Nevertheless, this SHOULD be the default database for applications using IMGT as
reference, as the sequence for each gene/allele is unique.

– IMGT/LIGM: This database collects sequences described in INSDC databases (GenBank/ENA/DDBJ).
As it might contain multiple entries representing a given gene/allele, it is NOT RECOMMENDED to use
it unless that inference gene/allele is only present in IMGT/LIGM and not in IMGT/GENE-DB.

• RECOMMENDED: /inference to indicate the tool used for segment inference. The description string
SHOULD use COORDINATES as category and aligment as type [INSDC_FT].

Annotation of sequences producing multiple hits with identical scores is problematic and is ultimately at the discretion
of the depositing researcher. However, the algorithms used for tie-breaking SHOULD be documented in data set 5. In
addition, the following procedures MUST be followed:

• Certain gene, ambiguous allele: If multiple alleles of the same gene match to the sequence, the /allele
qualifier MUST NOT be used. As the REQUIRED /db_xref qualifier will ofter refer to a specific allele, all
equal hits SHOULD be annoted via this qualifier (which can be use multiple times). Also see the note on the
limitations of the IMGT/GENE-DB reference database above.

• Ambiguous gene: Pick one, annotate using the qualifiers as noted for ambiguous allele.

JUNCTION annotation

INSDC does currently not define a key to annotate JUNCTION10. Therefore the following procedure MUST be used:

• REQUIRED: key CDS, indicating the positions of

1. the first bp of the first AA of JUNCTION

2. the last bp of the last AA of JUNCTION as determined by the utilized V(D)J inference tool.

Open coordinates MUST be used for both coordinates to allow for automated creation of the /translated
qualifier providing the peptide sequence. Further note that a non-productive JUNCTION can have a length not
divisible by three. This key contains the following qualifiers:

– REQUIRED: qualifier /codon_start with the assigned value “1”.

– REQUIRED: qualifier /function with the assigned value “JUNCTION”.

– REQUIRED: qualifier /product with an assigned value matching the regular expression
10 NCBI confirmed that once there would be enough datasets using the JUNCTION tag as specified here, a motion for an INSDC-sanctioned key

could be initiated.

2.3. AIRR Standards 51

airr-standards Documentation, Release 1.3

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta))
→˓chain junction region$/

The variable region referred to in the string MUST be the same as the one given in the misc_feature
key.

– RECOMMENDED: qualifier /inference, indicating the tool used for positional inference. The de-
scription string SHOULD use COORDINATES as category and protein motif as type [INSDC_FT].

– FORBIDDEN: qualifier /translated, which will be automatically added by Genbank.

Note that the complete CDS key will be removed by Genbank if the translation contains stop codons or to
many “N” (exact number unknown). As such a record will lack a central piece of REQUIRED information it is
RECOMMENDED that submitters either

– remove the complete record or

– replace the CDS with a misc_feature key while at the same time removing the /codon_start and
/product qualifiers

upfront, as described in the submission manual. If the submitter chooses the replacement option, it has to be
ensured that the annotated coordinates are actually valid and not affect by the frame- shift.

Record body

The record body starts after ORIGIN (ENA: SQ line) and MUST contain:

• the consensus sequence

References

Footnotes

Appendix

Example record (GenBank format)

LOCUS AB123456 420 bp mRNA linear EST 01-JAN-2015
DEFINITION TLS: Mus musculus immunoglobulin heavy chain variable region,

sequence.
ACCESSION AB123456
VERSION AB123456.7
KEYWORDS TLS; Targeted Locus Study; AIRR; MiAIRR:1.0.
SOURCE Mus musculus

ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires;
Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 420)
AUTHORS Stibbons,P.
TITLE Section 5 information for experiment FOO1
JOURNAL published (01-JAN-2000) on Zenodo
REMARK DOI:10.1000/0000-12345678

REFERENCE 2 (bases 1 to 420)

(continues on next page)

52 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

AUTHORS Stibbons,P.
TITLE Direct Submission
JOURNAL Submitted (01-JAN-2000) Center for Transcendental Immunology,

Unseen University, Ankh-Morpork, 12345, DISCWORLD
DBLINK BioProject: PRJNA000001

BioSample: SAMN000001
Sequence Read Archive: SRR0000001

FEATURES Location/Qualifiers
source 1..420

/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL/6J"
/citation=[1]
/rearranged
/note="AIRR_READ_COUNT:123”

V_region 1..324
misc_feature 1..324

/note="immunoglobulin heavy chain variable region"
V_segment 1..257

/gene="IGHV1-34"
/allele="01"
/db_xref="IMGT/LIGM:AC073565"
/inference="COORDINATES:alignment:IgBLAST:1.6"

D_segment 266..272
/gene="IGHD2-2"
/allele="01"
/db_xref="IMGT/LIGM:AJ851868"
/inference="COORDINATES:alignment:IgBLAST:1.6"

J_segment 291..324
/gene="IGHJ4"
/allele="01"
/db_xref="IMGT/LIGM:V00770"
/inference="COORDINATES:alignment:IgBLAST:1.6"

CDS <258..>290
/codon_start=1
/function="JUNCTION"
/product="immunoglobulin heavy chain junction region"
/inference="COORDINATES:protein motif:IgBLAST:1.6"
/translated="CARAGVYDGYTMDYW"

C_region 325..420
/gene="Ighg2c"

ORIGIN
1 agcctggggc ttcagtgaag atgtcctgca aggcttctgg ctacacattc actgactata
61 acatacactg ggtgaagcag agccatggaa agagccttga gtggattgca tatattaatc

121 ctaacaatgg tggttatggc tataacgaca agttcaggga caaggccaca ttgactgtcg
181 acaggtcatc caacacagcc tacatggggc tccgcagcct gacctctgag gactctgcag
241 tctattactg tgcaagagcg ggagtttacg acggatatac tatggactac tggggtcaag
301 gaacctcagt caccgtctcc tcagccaaaa caacagcccc atcggtctat ccactggccc
361 ctgtgtgtgg aggtacaact ggctcctcgg tgactctagg atgcctggtc aagggcaact

//

Glossary

• MUST / REQUIRED: Indicates that an element or action is necessary to conform to the standard.

• SHOULD / RECOMMENDED: Indicates that an element or action is considered to be best practice by AIRR,

2.3. AIRR Standards 53

airr-standards Documentation, Release 1.3

but not necessary to conform to the standard.

• CAN / OPTIONAL: Indicates that it is at the discretion of the user to use an element or perform an action.

• MUST NOT / FORBIDDEN: Indicates that an element or action will be in conflict with the standard.

Abbreviations

• AA: amino acid

• bp: base pair

• DOI: digital object identifier

• FT: INSDC Feature Table

• INSDC: International Nucleotide Sequence Database Collaboration

• SRA: sequence read archive

Introduction

The MiAIRR standard

The MiAIRR standard (minimal information about adaptive immune receptor repertoires) is a minimal reporting stan-
dard for experiments using sequencing-based technologies to study adaptive immune receptors (e.g. T cell receptors
or immunoglobulins). It is developed and maintained by the Minimal Standards Working Group of the Adaptive Im-
mune Receptors Repertoire (AIRR) Community [Breden_2017]. The current version (1.0) of the standard has been
recently published [Rubelt_2017] and was passed by the general assembly at the annual AIRR Community meeting in
December 2017. MiAIRR requires researchers to report six sets of information:

1. study, subject, diagnosis & intervention

2. sample collection

3. sample processing and sequencing

4. raw sequencing data

5. data processing

6. processed sequences with a basic analysis results

However, MiAIRR only describes the mandatory data items that have to be reported, but neither provides details
how and where to deposit data nor specifies data types and formats. Therefore this document aims to provide both a
submission manual for users as well as a detailed data specification for developers.

Requirement Levels of AIRR Schema Fields

Clarification of Terms

• The terms “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”,
“MAY” and “OPTIONAL” are to be interpreted as described in [RFC2119].

• The terms “IF” and “ONLY IF” are are to be interpreted as sufficent and necessary requirement, respectively.

54 Chapter 2. Table of Contents

http://airr-community.org
http://airr-community.org

airr-standards Documentation, Release 1.3

• The term “NULL-LIKE” is an extension of the NULL term in SQL and its equivalents in other programming
languages, referring to the absence of data in a field (i.e., the field is empty). NULL-LIKE additionally includes
the following terms, which also define the reason why the information is missing. As these terms are expected
to be provided as text, the field would not be NULL but nevertheless NULL-LIKE (i.e., it lacks biologically
interpretable information).

– not_applicable: There is no meaningful value for this field due to study design (e.g., sex for a phage
library).

– not_collected: Data for this field was not collected during the study.

– missing: Data for field was collected, but is not available now.

Categories of AIRR Schema Fields

• Fields MUST be indicated by the x-airr:miairr property IF and ONLY IF the field or its content is gov-
erned by the MiAIRR data standard [Rubelt_2017].

• The x-airr:miairr property MUST be assigned to one of the following three requirement levels:

– essential: Information on this field MUST be provided and is considered critical for the meaningful
interpretation of the data. Therefore the value of such a field MUST NOT be NULL-LIKE. Due to this
strict requirement, this level is only assigned to a small set of fields. Importantly, fields are not elevated
to this level based on the fact that the respective information should typically be available to the data
generator. This was decided to simplify MiAIRR-compliant data annotation by third parties, who might
perform this task based on publicly available information only.

– important: Information for this field MUST be provided. However, the field MAY be assigned a
NULL-LIKE value if the respective information is not available. The majority of fields governed by the
MiAIRR data standard are assigned to this level.

– defined: Information for this field MAY be provided. However, IF information matching the semantic
definition of the field is provided, this field MUST be used for reporting.

Compliance with the MiAIRR Data Standard

• Compliance to the MiAIRR Data Standard is currently a binary state, i.e., a data either is or is not compliant,
there are not “grades” of compliance. However, additional requirements for specific use cases might be defined
in the future.

• Data sets are considered MiAIRR-compliant ONLY IF all essential and important fields are reported.

• Note that important fields with NULL-LIKE values MUST NOT be dropped from a data set.

• Implementors of data entry interfaces SHOULD NOT set the default value of important fields to NULL-
LIKE values, i.e., users should be required to actively select the values.

Metadata Annotation Guidelines

Purpose of this Document

This document describes the RECOMMENDED ways to provide metadata annotation for various experimental setups.

2.3. AIRR Standards 55

airr-standards Documentation, Release 1.3

Clarification of Terms

• The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”, “RECOM-
MENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

Individual fields

library_generation_method

The library_generation_method describes how the nucleic acid annotated in template_class that en-
codes the V(D)J-rearrangement it reverse-transcribed, amplified and/or otherwise prepared for further processing.
Typically this procedure will precede further NGS platform- specific steps, however these procedures MAY be com-
bined. The field uses a controlled vocabulary, the individual values are described below:

template_classlibrary_generation_methodMethodology
DNA PCR Conventional PCR on genomic DNA of a vertebrate host (requires:

synthetic == false)
Conventional PCR on DNA of a synthetic library (requires: synthetic ==
true)

RNA RT(RHP)+PCR RT-PCR using random hexamer primers
RT(oligo-dT)+PCRRT-PCR using oligo-dT primers
RT(oligo-dT)+TS+PCR5’-RACE PCR (i.e. RT is followed by a template switch (TS) step) using

oligo-dT primers
RT(oligo-dT)+TS(UMI)+PCR5’-RACE PCR using oligo-dT primers and template switch primers contain-

ing unique molecular identifiers (UMI), i.e., the 5’ end is UMI-coded
RT(specific)+PCRRT-PCR using transcript-specific primers
RT(specific)+TS+PCR5’-RACE PCR using transcript- specific primers
RT(specific)+TS(UMI)+PCR5’-RACE PCR using transcript- specific primers and template switch primers

containing UMIs
RT(specific+UMI)+PCRRT-PCR using transcript-specific primers containing UMIs (i.e., the 3’ end is

UMI-coded)
RT(specific+UMI)+TS+PCR5’-RACE PCR using transcript- specific primers containing UMIs (i.e., the 3’

end is UMI-coded)
RT(specific)+TS RT-based generation of dsDNA without subsequent PCR. This is used by

RNA-seq kits.
any other Any methodology not covered above

Specific Use Cases and Experimental Setups

Synthetic libraries

In synthetic libraries (e.g. phage or yeast display), particles present genetically engineered constructs (e.g. scFv
fusion receptors) on their surface. As this deviates substantially from other workflows, the following annotation
SHOULD/MUST be used:

• In general, Subject should be interpreted as the initial library that undergoes a mutation/selection procedure.

• synthetic: MUST be set to true

• species: It is assumed that every synthetic library is derived from V and J genes that exist in some vertebrate
species. This field SHOULD encode this species. Importantly, it MUST NOT encode the phage vector, the

56 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

bacterial host or the comparable biological component of the library system that constitutes the presenting
particle.

• sample_type: SHOULD be NULL.

• single_cell: Only true if individual particles are isolated and sequenced. Note that colonies or plaques,
even if containing genetically identical particles, per se do not match this definition and therefore MUST be
annotated as false.

• cell_storage: SHOULD be used for non-cellular particles analogously.

• physical_linkage: For scFv constructs the hetero_prelinkeded term MUST be used. VHH (i.e.
camelid) libraries SHOULD annotate none as there is only a single rearrangement envolved.

2.3.2 AIRR Data Representations

AIRR Data Representations are versioned specifications that consist of a file format and a well-defined schema. The
schema is provided in a machine-readable YAML document that follows the OpenAPI v2.0 specification. The schema
defines the data model, field names, data types, and encodings for AIRR standard objects. Strict typing enables
interoperability and data sharing between different AIRR-seq analysis tools and repositories, and some fields use a
controlled vocabulary or an ontology for value restriction. Specification extensions are utilized to define AIRR-specific
attributes.

FAIR Principles

We desire AIRR standard objects to be FAIR (findable, accessible, interoperable and reusable) [Wilkinson_2016]:

• findable: by giving AIRR standard objects a globally unique identifier

• accessible: by providing an API where AIRR standard objects can be queried and downloaded

• interoperable: by defining a OpenAPI schema for the AIRR standard objects

• reusable: by linking the AIRR standard objects together into a standard formats

AIRR Data Model

The MiAIRR standard defines the minimal information for submission and publication of AIRR-seq datasets. The
standard defines a set of data elements for this information and organizes them into six high-level sets.

• Study, Subject and Diagnosis

• Sample Collection

• Sample Processing and Sequencing

• Raw Sequences

• Data Processing

• Processed Sequences with Annotations

However beyond these sets, MiAIRR does not define any structure, data model or relationship between the data
elements. This provides flexibility for the information to be stored in various database repositories but is problematic
for interoperability and reusability of that information by computer programs. The AIRR Data Model overcomes
these issues by defining a schema for the MiAIRR data elements, structuring them within schema objects, defining the
relationship between those objects, and defining a file format.

Here are the primary schema objects of the AIRR Data Model:

2.3. AIRR Standards 57

airr-standards Documentation, Release 1.3

Schema
Object

Description

Study Information about the experimental study design, including the title of the study, laboratory contact
information, funding, and linked publications.

Subject Information about the study cohorts and individual subjects, including species, sex, age, and ancestry.
DiagnosisInformation about disease state(s), therapies, and study group membership (e.g., control versus disease).
Sample Information about the origin and expected composition of the biological sample(s). This set aims to

capture essential information about the collection of a sample, including its source (e.g., anatomical
site), its provenance (provider), and the experimental condition (e.g., the time point during the course
of a disease or treatment).

CellProcessingInformation about the cell subset being profiled, as defined by the investigator, and the flow cytometry
or other markers used to select the subset. Additional information includes the number of cells per
sample and whether cells were prepared in bulk or captured as single cells.

NucleicAcidProcessingInformation about nucleic acid sample type (e.g., RNA versus DNA) and how immune-receptor gene
rearrangements were amplified and sequenced (for example, RACE-PCR versus multiplex PCR, paired
PCR, and/or varying read length and sequencing chemistries).

SequencingRunInformation about the sequencing run, such as the number of reads, read lengths, quality control pa-
rameters, the sequencing kit and instrument(s) used, and run batch number. Also includes information
about the raw data for the sequencing run (e.g., FASTQ files).

DataProcessingInformation about the data processing to transform the raw sequencing data into Rearrangements.
RepertoireComposite object that combines the schema objects Study, Subject, Diagnosis, Sample,

CellProcessing, NucleicAcidProcessing, SequencingRun, and DataProcessing.
Each Repertoire has a unique identifier repertoire_id for linking with other data files, e.g.
Rearrangements. Repertoires have their own schema and file format described here.

RearrangmentsAnnotated sequences describing adaptive immune receptor chains. Rearrangements have their own
schema and file format described here.

Relationship between Schema Objects

The MiAIRR categories are hierarchical, and includes information about the study, the subjects, the collected samples
and how they are processed, details of the sequencing protocol, and information about the data analysis. The top-down
relationships are either 1-to-n indicating the top level object can be related to any number of sub-level objects, or n-to-n
indicating any number of top level object can be related to any number of sub-level objects. Lastly, 1-to-1 indicates
the top level object is related to a single sub-level object.

• Study 1-to-n with Subject. A study may contain any number of subjects.

• Subject 1-to-n with Diagnosis. Each subject may contain any number of diagnoses.

• Subject 1-to-n with Sample. Each subject may contain any number of samples.

• Sample 1-to-n with CellProcessing. A sample may have any number of cell processing records.

• CellProcessing 1-to-n with NucleicAcidProcessing. A cell processing record may have any num-
ber of nucleic acid processing records.

• NucleicAcidProcessing 1-to-n with SequencingRun. A nucleic acid processing records may have
any number of sequencing runs.

• SequencingRun n-to-n with DataProcessing. Multiple sequencing runs can be combined in a data
processing, and multiple data processing can be done on a sequencing run.

However, this hierarchy is deep and complicated. Therefore to simplify the processing of this information, we denor-
malized the hierarchy around the conceptual Repertoire object. This denormalization represents many relation-
ships as 1-to-1 which simplifies the structure. A single Repertoire has these relationships with the primary schema
objects.

58 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

• Repertoire 1-to-1 with Study. A repertoire is for a single study, though a study may have multiple reper-
toires.

• Repertoire 1-to-1 with Subject. A repertoire is for a single subject, though a subject may have other
repertoires defined.

• Sample 1-to-1 with CellProcessing, NucleicAcidProcessing, and SequencingRun. A sample
is associated with a single chain of sample processing from initial collection, through cell and nucleic acid
processing, to sequencing.

• Repertoire 1-to-n with Sample. Generally a repertoire has a single sample, but sometimes studies perform
technical replicates or re-sequencing to generate additional data, and these studies will have multiple samples,
which are to be combined and analyzed together as part of the same repertoire.

• Repertoire 1-to-n with DataProcessing. A repertoire can be analyzed multiple times. More details
about multiple data processing is provided below.

The trade-off with denormalization of the hierarchy is that it causes duplication of data. For example, two repertoires
for the same study will have the Study information duplicated within each of the two repertoire records; likewise
multiple repertoires for the same subject will have the Subject information duplicated.

While the denormalized Repertoire simplifies read-only access to the MiAIRR information, it complicates
data entry and write access to the information because updates need to be propagated to all of the duplicate
records. Therefore, Repertoire was designed to be easily transformed into a normalized form, representing
the full hierarchy of the objects, by utilizing the study_id, subject_id, and sample_id fields to uniquely identify the
Study, Subject and Sample objects across multiple repertoires. The exception is that CellProcessing and
NucleicAcidProcessing do not have their own unique identifiers, so they are included within Sample.

AIRR extension properties

The OpenAPI V2 specification provides the ability to define extension properties on schema objects. These are addi-
tional properties on the schema definition directly, not to be confused with additional properties on the data. These
extension properties allow those schema definitions to be annotated with MiAIRR and AIRR specific information.
Instead of creating separate extensions for each property, a single extension x-airr property is defined, which is an
object that contains any number of properties. Within the AIRR schema, AIRR_Extension defines the schema for
the x-airr object and the properties within it. Here is a list of the currently supported AIRR extension properties:

Exten-
sion

Description

miairr Present if the annotated property is a MiAIRR data standard element. Always has a requirement level
assigned to it.

nullableAssumes miairr. False if the annotated property must not be NULL by the MiAIRR standard, other-
wise True or null.

set Assumes miairr. The MiAIRR set for the annotated property.
subset Assumes miairr. The MiAIRR subset for the annotated property.
name Assumes miairr. The MiAIRR field name.
format Describes the format for the annotated property. Value is either free text, controlled

vocabulary or ontology.
ontologyIf format=ontology then this provides additional information about the ontology including draft

status, name, URL and top node term.

Schema Definitions

2.3. AIRR Standards 59

airr-standards Documentation, Release 1.3

Repertoire Schema

A Repertoire is an abstract organizational unit of analysis that is defined by the researcher and consists of
study metadata, subject metadata, sample metadata, cell processing metadata, nucleic acid processing metadata, se-
quencing run metadata, a set of raw sequence files, data processing metadata, and a set of Rearrangements. A
Repertoire gathers all of this information together into a composite object, which can be easily accessed by com-
puter programs for data entry, analysis and visualization.

A Repertoire is specific to a single subject otherwise it can consist of any number of samples (which can be
processed in different ways), any number of raw sequence files, and any number of rearrangements. It can also
consist of any number of data processing metadata objects that describe the processing of raw sequence files into
Rearrangements.

Typically, a Repertoire corresponds to the biological concept of the immune repertoire for that single subject
which the researcher experimentally measures and computationally analyzes. However, researchers can have different
interpretations about what constitutes the biological immune repertoire; therefore, the Repertoire schema attempts
to be flexible and broadly useful for all AIRR-seq studies.

Another researcher can take the same raw sequencing data and associated metadata and create their own Repertoire
that is different from the original researcher’s. A common example is to define a repertoire that is a subset such as “pro-
ductive rearrangements for IGHV4” whereas the original researcher defined a more generic “B cell repertoire”. This
new Repertoire would have much of the same metadata as the original Repertoire, except associated with a
different study, and with additional information in the data processing metadata that describes how the rearrangements
were filtered down to just the “productive rearrangements for IGHV4”. Likewise, another researcher may get access
to the original biosample material and perform their own sample processing and sequencing, which also would be a
new Repertoire. That new Repertoire could combine samples from the original researcher’s Repertoire
with the new sample data as a large dataset for the subject.

Multiple Data Processing on a Repertoire

Data processing can be a complicated multi-stage process. Documenting the process in a formal way is challenging
because of the diversity of actions that may be performed. The MiAIRR standard requires documentation of the
process but in an informal way with free text descriptions. A Repertoire might undergo multiple different data
processing for any number of reasons, e.g. to compare the results from different toolchains, or to compare different
settings for the same toolchain.

It is expected that all of the Samples of a Repertoire will be processed together within a DataProcessing.
That is, a DataProcessing that only uses some but not all samples in a Repertoire could be confusing
to users and appear as though data is missing. Likewise, processing some samples within a Repertoire with
one DataProcessing and the remaining samples with a different DataProcessing could also confuse users.
Because DataProcessing is unstructured information, it is not possible to validate that all Samples in a
Repertoire are being processed together, so this expectation cannot be strictly enforced.

Having multiple DataProcessing for a Repertoire will create multiple sets of Rearrangements that are
distinct and separate from each other. Analysis tools need to be careful not to mix these sets of Rearrangements
from different DataProcessing because it can generate incorrect results. The identifier data_processing_id
was added so Rearrangements can identify their specific DataProcessing.

Linking Data

Each Repertoire has a unique repertoire_id identifier. This identifier should be globally unique so that reper-
toires from multiple studies can be combined together without conflict. The repertoire_id is used to link other
AIRR data to a Repertoire. Specifically, the Rearrangements Schema includes repertoire_id for referencing
the specific Repertoire for that Rearrangement.

60 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

If a Repertoire has multiple DataProcessing then data_processing_id should be used to
distinguish the appropriate DataProcessing within the Repertoire. The Rearrangements con-
tains data_processing_id for this purpose. The data_processing_id is only unique within a
Repertoire so repertoire_id should first be used to get the appropriate Repertoire object and then
data_processing_id used to acquire the appropriate DataProcessing.

It is expected that typical Repertoires might only have a single DataProcessing, in which case
repertoire_id and data_processing_id will be semantically equivalent and only the former should be
used.

If a Repertoire has multiple sample processing objects in the sample array then sample_processing_id
should be used to distinguish the the approrpiate sample processing object within the Repertoire. The
Rearrangement object can contain a sample_processing_id to uniquely identify a sample processing object
within a Repertoire. Like data_processing_id, the sample_processing_id is only unique within
the Repertoire so repertoire_id should first be used to get the appropiate Repertoire object and then
sample_processing_id should be used to determine the appropiate sample processing object that is associated
with the Rearrangement. If the Rearrangement object does not have a sample_processing_id then it
can be assumed that the rearrangement is associated with all of the samples in the Repertoire (e.g. the rearrange-
ment is a collapsed rearrangement across multiple samples).

It is expected that Repertoires might often have a single sample processing object, in which case
repertoire_id and sample_processing_id will be semantically equivalent and only the former should
be used.

Finally, if it is necessary to link a Rearrangement object with a unique pairing of sample processing and
DataProcessing, the repertoire_id of the Rearrangement object should be used to identify the
correct Repertoire object and then the data_processing_id should be used to identify the correct
DataProcessing metadata and the sample_processing_id should be used to identify the correct sample
processing metadata within that Repertoire.

Duality between Repertoires and Rearrangements

There is an important duality relationship between Repertoires and Rearrangements, specifically with the ex-
perimental protocols described in the Repertoire versus the annotations on Rearrangements. A Repertoire
defines an experimental design for what a researcher intends to measure or observe, while the Rearrangements
are what was actually measured and observed. Technically, the border between the two occurs at sequencing, that is
when the biological physical entity (prepared DNA) is measured and recorded as information (nucleotide sequence).

This duality is important when considering how to answer certain questions. For example, locus for
Rearrangements may have the value “IGH” which indicates that B cell heavy chain receptors were measured,
yet the Repertoire might have “T cell” in cell_subset which indicates the researcher intended to measure T
cells. This conflict between the two indicates something is wrong. Differences can occur in many ways, as with errors
in the experimental protocol, or data processing might have incorrectly processed the raw sequencing data leading to
invalid annotations.

File Format Specification

Files are YAML/JSON with a structure defined below. Files should be encoded as UTF-8. Identifiers are case-sensitive.
Files should have the extension .yaml, .yml, or .json.

File Structure

• The file as a whole is considered a dictionary (key/value pair) structure with the keys Info and Repertoire.

2.3. AIRR Standards 61

airr-standards Documentation, Release 1.3

• The file can (optionally) contain an Info object, at the beginning of the file, based upon the Info schema
in the OpenAPI V2 specification. If provided, version in Info should reference the version of the AIRR
schema for the file.

• The file should correspond to a list of Repertoire objects, using Repertoire as the key to the list.

• Each Repertoire object should contain a top-level key/value pair for repertoire_id that uniquely iden-
tifies the repertoire.

• Some fields require the use of a particular ontology or controlled vocabulary.

• The structure is the same regardless of whether the data is stored in a file or a data repository. For example,
The ADC API will return a properly structured JSON object that can be saved to a file and used directly without
modification.

Repertoire Fields

Download as TSV

Name Type Attributes Definition
repertoire_id string optional, iden-

tifier, nullable
Identifier for the repertoire object. This identifier should
be globally unique so that repertoires from multiple
studies can be combined together without conflict. The
repertoire_id is used to link other AIRR data to a Reper-
toire. Specifically, the Rearrangements Schema in-
cludes repertoire_id for referencing the specific Reper-
toire for that Rearrangement.

repertoire_name string optional, nul-
lable

Short generic display name for the repertoire

repertoire_descriptionstring optional, nul-
lable

Generic repertoire description

study Study required Study object
subject Subject required Subject object
sample array required List of Sample objects
data_processing array of Dat-

aProcessing
required List of Data Processing objects

Study Fields

Download as TSV

62 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
study_id string required, nul-

lable
Unique ID assigned by study registry

study_title string required, nul-
lable

Descriptive study title

study_type Ontology required, nul-
lable

Type of study design

study_descriptionstring optional, nul-
lable

Generic study description

inclusion_exclusion_criteriastring required, nul-
lable

List of criteria for inclusion/exclusion for the study

grants string required, nul-
lable

Funding agencies and grant numbers

collected_by string required, nul-
lable

Full contact information of the data collector, i.e. the
person who is legally responsible for data collection and
release. This should include an e-mail address.

lab_name string required, nul-
lable

Department of data collector

lab_address string required, nul-
lable

Institution and institutional address of data collector

submitted_by string required, nul-
lable

Full contact information of the data depositor, i.e. the
person submitting the data to a repository. This is sup-
posed to be a short-lived and technical role until the sub-
mission is relased.

pub_ids string required, nul-
lable

Publications describing the rationale and/or outcome of
the study

keywords_study array of string required, nul-
lable

Keywords describing properties of one or more data sets
in a study

Subject Fields

Download as TSV

2.3. AIRR Standards 63

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
subject_id string required, nul-

lable
Subject ID assigned by submitter, unique within study

synthetic boolean required TRUE for libraries in which the diversity has been syn-
thetically generated (e.g. phage display)

species Ontology required Binomial designation of subject’s species
organism Ontology DEPRECATED Binomial designation of subject’s species
sex string required, nul-

lable
Biological sex of subject

age_min number required, nul-
lable

Specific age or lower boundary of age range.

age_max number required, nul-
lable

Upper boundary of age range or equal to age_min for
specific age. This field should only be null if age_min
is null.

age_unit Ontology required, nul-
lable

Unit of age range

age_event string required, nul-
lable

Event in the study schedule to which Age refers. For
NCBI BioSample this MUST be sampling. For other
implementations submitters need to be aware that there
is currently no mechanism to encode to potential delta
between Age event and Sample collection time, hence
the chosen events should be in temporal proximity.

age string DEPRECATED
ancestry_populationstring required, nul-

lable
Broad geographic origin of ancestry (continent)

ethnicity string required, nul-
lable

Ethnic group of subject (defined as cultural/language-
based membership)

race string required, nul-
lable

Racial group of subject (as defined by NIH)

strain_name string required, nul-
lable

Non-human designation of the strain or breed of animal
used

linked_subjects string required, nul-
lable

Subject ID to which Relation type refers

link_type string required, nul-
lable

Relation between subject and linked_subjects, can be
genetic or environmental (e.g.exposure)

diagnosis array of Diag-
nosis

optional Diagnosis information for subject

Diagnosis Fields

Download as TSV

64 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
study_group_descriptionstring required, nul-

lable
Designation of study arm to which the subject is as-
signed to

disease_diagnosisOntology required, nul-
lable

Diagnosis of subject

disease_length string required, nul-
lable

Time duration between initial diagnosis and current in-
tervention

disease_stage string required, nul-
lable

Stage of disease at current intervention

prior_therapies string required, nul-
lable

List of all relevant previous therapies applied to subject
for treatment of Diagnosis

immunogen string required, nul-
lable

Antigen, vaccine or drug applied to subject at this inter-
vention

intervention string required, nul-
lable

Description of intervention

medical_history string required, nul-
lable

Medical history of subject that is relevant to assess the
course of disease and/or treatment

Sample Fields

Download as TSV

Name Type Attributes Definition
sample_id string required, nul-

lable
Sample ID assigned by submitter, unique within study

sample_type string required, nul-
lable

The way the sample was obtained, e.g. fine-needle aspi-
rate, organ harvest, peripheral venous puncture

tissue Ontology required, nul-
lable

The actual tissue sampled, e.g. lymph node, liver, pe-
ripheral blood

anatomic_site string required, nul-
lable

The anatomic location of the tissue, e.g. Inguinal, femur

disease_state_samplestring required, nul-
lable

Histopathologic evaluation of the sample

collection_time_point_relativestring required, nul-
lable

Time point at which sample was taken, relative to Col-
lection time event

collection_time_point_referencestring required, nul-
lable

Event in the study schedule to which Sample collection
time relates to

biomaterial_providerstring required, nul-
lable

Name and address of the entity providing the sample

Tissue and Cell Processing Fields

Download as TSV

2.3. AIRR Standards 65

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
tissue_processingstring required, nul-

lable
Enzymatic digestion and/or physical methods used to
isolate cells from sample

cell_subset Ontology required, nul-
lable

Commonly-used designation of isolated cell population

cell_phenotype string required, nul-
lable

List of cellular markers and their expression levels used
to isolate the cell population

cell_species Ontology optional, nul-
lable

Binomial designation of the species from which the an-
alyzed cells originate. Typically, this value should be
identical to species, if which case it SHOULD NOT be
set explicitly. Howver, there are valid experimental se-
tups in which the two might differ, e.g. chimeric animal
models. If set, this key will overwrite the species infor-
mation for all lower layers of the schema.

single_cell boolean required, nul-
lable

TRUE if single cells were isolated into separate com-
partments

cell_number integer required, nul-
lable

Total number of cells that went into the experiment

cells_per_reactioninteger required, nul-
lable

Number of cells for each biological replicate

cell_storage boolean required, nul-
lable

TRUE if cells were cryo-preserved between isolation
and further processing

cell_quality string required, nul-
lable

Relative amount of viable cells after preparation and (if
applicable) thawing

cell_isolation string required, nul-
lable

Description of the procedure used for marker-based iso-
lation or enrich cells

cell_processing_protocolstring required, nul-
lable

Description of the methods applied to the sample in-
cluding cell preparation/ isolation/enrichment and nu-
cleic acid extraction. This should closely mirror the Ma-
terials and methods section in the manuscript.

Nucleic Acid Processing Fields

Download as TSV

66 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
template_class string required The class of nucleic acid that was used as primary start-

ing material for the following procedures
template_qualitystring required, nul-

lable
Description and results of the quality control performed
on the template material

template_amount string required, nul-
lable

Amount of template that went into the process

library_generation_methodstring required Generic type of library generation
library_generation_protocolstring required, nul-

lable
Description of processes applied to substrate to obtain a
library that is ready for sequencing

library_generation_kit_versionstring required, nul-
lable

When using a library generation protocol from a com-
mercial provider, provide the protocol version number

pcr_target array of PCR-
Target

optional If a PCR step was performed that specifically targets the
IG/TR loci, the target and primer locations need to be
provided here. This field holds an array of PCRTarget
objects, so that multiplex PCR setups amplifying mul-
tiple loci at the same time can be annotated using one
record per locus. PCR setups not targeting any specific
locus must not annotate this field but select the appro-
priate library_generation_method instead.

complete_sequencesstring required To be considered complete, the procedure used for li-
brary construction MUST generate sequences that 1) in-
clude the first V gene codon that encodes the mature
polypeptide chain (i.e. after the leader sequence) and
2) include the last complete codon of the J gene (i.e. 1
bp 5’ of the J->C splice site) and 3) provide sequence
information for all positions between 1) and 2). To be
considered complete & untemplated, the sections of the
sequences defined in points 1) to 3) of the previous sen-
tence MUST be untemplated, i.e. MUST NOT over-
lap with the primers used in library preparation. mixed
should only be used if the procedure used for library
construction will likely produce multiple categories of
sequences in the given experiment. It SHOULD NOT
be used as a replacement of a NULL value.

physical_linkagestring required In case an experimental setup is used that physically
links nucleic acids derived from distinct Rearrange-
ments before library preparation, this field describes the
mode of that linkage. All hetero_* terms indicate that
in case of paired-read sequencing, the two reads should
be expected to map to distinct IG/TR loci. *_head-head
refers to techniques that link the 5’ ends of transcripts
in a single-cell context. *_tail-head refers to techniques
that link the 3’ end of one transcript to the 5’ end of an-
other one in a single-cell context. This term does not
provide any information whether a continuous reading-
frame between the two is generated. *_prelinked refers
to constructs in which the linkage was already present
on the DNA level (e.g. scFv).

2.3. AIRR Standards 67

airr-standards Documentation, Release 1.3

PCR Target Locus Fields

Download as TSV

Name Type Attributes Definition
pcr_target_locusstring required, nul-

lable
Designation of the target locus. Note that this field
uses a controlled vocubulary that is meant to provide
a generic classification of the locus, not necessarily the
correct designation according to a specific nomencla-
ture.

forward_pcr_primer_target_locationstring required, nul-
lable

Position of the most distal nucleotide templated by the
forward primer or primer mix

reverse_pcr_primer_target_locationstring required, nul-
lable

Position of the most proximal nucleotide templated by
the reverse primer or primer mix

Raw Sequence Data Fields

Download as TSV

Name Type Attributes Definition
file_type string required, nul-

lable
File format for the raw reads or sequences

filename string required, nul-
lable

File name for the raw reads or sequences. The first file
in paired-read sequencing.

read_direction string required, nul-
lable

Read direction for the raw reads or sequences. The first
file in paired-read sequencing.

read_length integer required, nul-
lable

Read length in bases for the first file in paired-read se-
quencing

paired_filename string required, nul-
lable

File name for the second file in paired-read sequencing

paired_read_directionstring required, nul-
lable

Read direction for the second file in paired-read se-
quencing

paired_read_lengthinteger required, nul-
lable

Read length in bases for the second file in paired-read
sequencing

Sequencing Run Fields

Download as TSV

68 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
sequencing_run_idstring required, nul-

lable
ID of sequencing run assigned by the sequencing facility

total_reads_passing_qc_filterinteger required, nul-
lable

Number of usable reads for analysis

sequencing_platformstring required, nul-
lable

Designation of sequencing instrument used

sequencing_facilitystring required, nul-
lable

Name and address of sequencing facility

sequencing_run_datestring required, nul-
lable

Date of sequencing run

sequencing_kit string required, nul-
lable

Name, manufacturer, order and lot numbers of sequenc-
ing kit

sequencing_filesRawSequenceDataoptional Set of sequencing files produced by the sequencing run

Data Processing Fields

Download as TSV

Name Type Attributes Definition
data_processing_idstring optional, iden-

tifier, nullable
Identifier for the data processing object.

primary_annotationboolean optional, iden-
tifier

If true, indicates this is the primary or default data pro-
cessing for the repertoire and its rearrangements. If
false, indicates this is a secondary or additional data pro-
cessing.

software_versionsstring required, nul-
lable

Version number and / or date, include company
pipelines

paired_reads_assemblystring required, nul-
lable

How paired end reads were assembled into a single re-
ceptor sequence

quality_thresholdsstring required, nul-
lable

How sequences were removed from (4) based on base
quality scores

primer_match_cutoffsstring required, nul-
lable

How primers were identified in the sequences, were they
removed/masked/etc?

collapsing_methodstring required, nul-
lable

The method used for combining multiple sequences
from (4) into a single sequence in (5)

data_processing_protocolsstring required, nul-
lable

General description of how QC is performed

data_processing_filesarray of string optional, nul-
lable

Array of file names for data produced by this data pro-
cessing.

germline_databasestring required, nul-
lable

Source of germline V(D)J genes with version number or
date accessed.

analysis_provenance_idstring optional, nul-
lable

Identifier for machine-readable PROV model of analysis
provenance

Rearrangement Schema

A Rearrangement is a sequence which describes a rearranged adaptive immune receptor chain (e.g., antibody heavy
chain or TCR beta chain) along with a host of annotations. These annotations are defined by the AIRR Rearrangement
schema and comprises eight categories.

2.3. AIRR Standards 69

airr-standards Documentation, Release 1.3

Cate-
gory

Description

Input The input sequence to the V(D)J assignment process.
Identi-
fiers

Primary and foreign key identifiers for linking AIRR data across files and databases.

Primary
Annota-
tions

The primary outputs of the V(D)J assignment process, which includes the gene locus, V, D, J, and
C gene calls, various flags, V(D)J junction sequence, copy number (duplicate_count), and the
number of reads contributing to a consensus input sequence (consensus_count).

Align-
ment
Annota-
tions

Detailed alignment annotations including the input and germline sequences used in the alignment;
score, identity, statistical support (E-value, likelihood, etc); and the alignment itself through CIGAR
strings for each aligned gene.

Align-
ment
Posi-
tions

The start/end positions for genes in both the input and germline sequences.

Region
Se-
quence

Sequence annotations for the framework regions (FWRs) and complementarity-determining regions
(CDRs).

Region
Posi-
tions

Positional annotations for the framework regions (FWRs) and complementarity-determining regions
(CDRs).

Junction
Lengths

Lengths for junction sub-regions associated with aspects of the V(D)J recombination process.

File Format Specification

Data for Rearrangement or Alignment objects are stored as rows in a tab-delimited file and should be compatible
with any TSV reader. A dataset is defined in this context as: a TSV file, a TSV with a companion YAML file containing
metadata, or a directory containing multiple TSV files and YAML files.

Encoding

• The file should be encoded as ASCII or UTF-8.

• Everything is case-sensitive.

Dialect

• The record separator is a newline \n and the field separator is a tab \t.

• Fields or data should not be quoted.

• A header line with the AIRR-specified column names is always required.

• Values must not contain tab or newline characters.

• Values should avoid @, #, and quote (" or ') characters, as the result may be implementation dependent.

• Nested delimiters are not supported by the schema explicitly and should be avoided. However, if multiple values
must be reported in a single column for an application specific reason, then the use of a comma as the delimiter
is recommended.

70 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

File names

AIRR formatted TSV files should end with .tsv.

File Structure

The data file has two sections in this order:

1. Header. A single line with column names.

2. Data values. One record per line.

A comment section preceding the header (e.g., # or @ blocks) is not part of the specification, but such a section is
reserved for potential inclusion in a future release. As such, a comment section should not be included in the file as it
may be incompatible with a future specification.

Header

A single line containing the column names and specifying the field order. Any field that corresponds to one of the
defined fields should use the specified field name.

Required columns

Some of the fields are defined as required and therefore must always be present in the header. Note, however,
that all columns allow for null values. Therefore, required columns exist to define a core set of fields that are always
present in the table structure, but do not mandate that a value be reported.

Custom columns

There are no restrictions on inclusion of additional custom columns in the Rearrangements file, provided such columns
do not use the same name as an existing required or optional field. It is recommended that custom fields follow the
same naming scheme as existing fields. Meaning, snake_case with narrowing scope when read from left to right.
For example, sequence_id is the “identifier of the query sequence”.

Consider submitting a pull request for a field name reservation to the airr-standards repository if the field may be
broadly useful.

Ordering

There are no requirements that fields or records be sorted or ordered in any specific way. However, the field ordering
provided by the schema is a recommended default, with top-to-bottom equating to left-to-right.

Data Values

The possible data types are string, boolean, number (floating point), integer, and null (empty string).

Boolean values

Boolean values must be encoded as T for true and F for false.

2.3. AIRR Standards 71

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 1.3

Null values

All fields may contain null values. This includes columns that are described as required. A null value should be
encoded as an empty string.

Coordinate numbering

All alignment sequence coordinates use the same scheme as IMGT and INSDC (DDBJ, ENA, GenBank), with the
exception that partial coordinate information should not be used in favor of simply assigning the start/end of the
alignment. Meaning, coordinates should be provided as 1-based values with closed intervals, without the use of > or
< annotations that denoted a partial region.

CIGAR specification

Alignments details are specified using the CIGAR format as defined in the SAM specifications, with some vocabulary
restrictions on the use of clipping, skipping, and padding operators.

The CIGAR string defines the reference sequence as the germline sequence of the given gene or region; e.g., for
v_cigar the reference is the V gene germline sequence. The query sequence is what was input into the alignment
tool, which must correspond to what is contained in the sequence field of the Rearrangement data. For the majority
of use cases, this will necessarily exclude alignment spacers from the CIGAR string, such as IMGT numbering gaps.
However, any gaps appearing in the query sequence should be accounted for in the CIGAR string so that the alignment
between the query and reference is correctly represented.

The valid operator sets and definitions are as follows:

Operator Description
= An identical non-gap character.
X A differing non-gap character.
M A positional match in the alignment. This can be either an identical (=) or differing (x)

non-gap character.
D Deletion in the query (gap in the query).
I Insertion in the query (gap in the reference).
S Positions that appear in the query, but not the reference. Used exclusively to denote the start

position of the alignment in the query. Should precede any N operators.
N A space in the alignment. Used exclusively to denote the start position of the alignment in

the reference. Should follow any S operators.

Note, the use of either the =/X or M syntax is valid, but should be used consistently. While leading S and N operators
are required, tailing S and N operators are optional.

For example, an D gene alignment that starts at position 419 in the query sequence (leading 418S), that is 16
nucleotides long with no indels (middle 16M), has an 10 nucleotide 5’ deletion (leading 10N), a 5 nucleotide 3’
deletion (trailing 5N), and ends 72 nucleotides from the end of the query sequence (trailing 71S) would have the
following D gene CIGAR string (d_cigar) and positional information:

Field Value
d_cigar 418S10N16M71S5N
d_sequence_start 419
d_sequence_end 434
d_germline_start 11
d_germline_end 26

72 Chapter 2. Table of Contents

https://samtools.github.io/hts-specs/SAMv1.pdf

airr-standards Documentation, Release 1.3

Definition Clarifications

Junction versus CDR3

We work with the IMGT definitions of the junction and CDR3 regions. Specifically, the IMGT JUNCTION includes
the conserved cysteine and tryptophan/phenylalanine residues, while CDR3 excludes those two residues. Therefore,
our junction and junction_aa fields which represent the extracted sequence include the two conserved residues,
while the coordinate fields (cdr3_start and cdr3_end) exclude them.

Productive

The schema does not define a strict definition of a productive rearrangement. However, the IMGT definition is recom-
mended:

1. Coding region has an open reading frame

2. No defect in the start codon, splicing sites or regulatory elements.

3. No internal stop codons.

4. An in-frame junction region.

Locus names

A naming convention for locus names is not strictly enforced, but the IMGT locus names are recommended. For
example, in the case of human data, this would be the set: IGH, IGK, IGL, TRA, TRB, TRD, or TRG.

Gene and allele names

Gene call examples use the IMGT nomenclature, but no specific gene or allele nomenclature is strictly mandated.
Species denotations may or may not be included in the gene name, as appropriate. For example, “Homo sapiens
IGHV4-59*01”, “IGHV4-59*01” and “AB019438” are all valid entries for the same allele.

However, when using an established reference database to assign gene calls adherence to the exact nomenclature used
by the reference database is strongly recommended, as this will facilitate mapping to the database entries, cross-study
comparison, and upload to public repositories.

Alignments

There is no required alignment scheme for the nucleotide and amino acid alignment fields. These fields may, or may
not, include numbering spacers (e.g., IMGT-numbering gaps), variations in case to denote mismatches, deletions,
or other features appropriate to the tool that performed the alignment. The only strict requirement is that the query
(“sequence”) and reference (“germline”) must be properly aligned.

Fields

The specification includes two classes of fields. Those that are required and those that are optional. Required is defined
as a column that must be present in the header of the TSV. Optional is defined as column that may, or may not, appear
in the TSV. All fields, including required fields, are nullable by assigning an empty string as the value. There are no
requirements for column ordering in the schema, although the Python and R reference APIs enforce ordering for the
sake of generating predictable output. The set of optional fields that provide alignment and region coordinates (“_start”

2.3. AIRR Standards 73

airr-standards Documentation, Release 1.3

and “_end” fields) are defined as 1- based closed intervals, similar to the SAM, VCF, GFF, IMGT, and INDSC formats
(GenBank, ENA, and DDJB; http://www.insdc.org).

Most fields have strict definitions for the values that they contain. However, some commonly provided information
cannot be standardized across diverse toolchains, so a small selection of fields have context-dependent definitions.
In particular, these context-dependent fields include the optional “_score,” “_identity,” and “_support” fields used for
assessing the quality of alignments which vary considerably in definition based on the methodology used. Similarly,
the “_alignment” fields require strict alignment between the corresponding observed and germline sequences, but the
manner in which that alignment is conveyed is somewhat flexible in that it allows for any numbering scheme (e.g.,
IMGT or KABAT) or lack thereof.

By default, data elements representing sequences in the schema contain nucleotide sequences except for data elements
ending in “_aa,” which are amino acid translations of the associated nucleotide sequence.

While the format contains an extensive list of reserved field names, there are no restrictions on inclusion of custom
fields in the TSV file, provided such custom fields have a unique name. Furthermore, suggestions for extending
the format with additional reserved names are welcomed through the issue tracker on the GitHub repository (https:
//github.com/airr-community/airr-standards).

Download as TSV

Name Type Attributes Definition
sequence_id string required,

identifier,
nullable

Unique query sequence identifier for the Rearrangment.
Most often this will be the input sequence header or
a substring thereof, but may also be a custom identi-
fier defined by the tool in cases where query sequences
have been combined in some fashion prior to align-
ment. When downloaded from an AIRR Data Commons
repository, this will usually be a universally unique
record locator for linking with other objects in the AIRR
Data Model.

sequence string required, nul-
lable

The query nucleotide sequence. Usually, this is the un-
modified input sequence, which may be reverse comple-
mented if necessary. In some cases, this field may con-
tain consensus sequences or other types of collapsed in-
put sequences if these steps are performed prior to align-
ment.

sequence_aa string optional, nul-
lable

Amino acid translation of the query nucleotide se-
quence.

rev_comp boolean required, nul-
lable

True if the alignment is on the opposite strand (reverse
complemented) with respect to the query sequence. If
True then all output data, such as alignment coordinates
and sequences, are based on the reverse complement of
‘sequence’.

productive boolean required, nul-
lable

True if the V(D)J sequence is predicted to be productive.

vj_in_frame boolean optional, nul-
lable

True if the V and J gene alignments are in-frame.

stop_codon boolean optional, nul-
lable

True if the aligned sequence contains a stop codon.

Continued on next page

74 Chapter 2. Table of Contents

http://www.insdc.org
https://github.com/airr-community/airr-standards
https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
complete_vdj boolean optional, nul-

lable
True if the sequence alignment spans the entire V(D)J
region. Meaning, sequence_alignment includes both the
first V gene codon that encodes the mature polypeptide
chain (i.e., after the leader sequence) and the last com-
plete codon of the J gene (i.e., before the J-C splice site).
This does not require an absence of deletions within the
internal FWR and CDR regions of the alignment.

locus string optional, nul-
lable

Gene locus (chain type). Note that this field uses a con-
trolled vocabulary that is meant to provide a generic
classification of the locus, not necessarily the correct
designation according to a specific nomenclature.

v_call string required, nul-
lable

V gene with allele. If referring to a known reference
sequence in a database the relevant gene/allele nomen-
clature should be followed (e.g., IGHV4-59*01 if using
IMGT/GENE-DB).

d_call string required, nul-
lable

First or only D gene with allele. If referring to a known
reference sequence in a database the relevant gene/allele
nomenclature should be followed (e.g., IGHD3-10*01 if
using IMGT/GENE-DB).

d2_call string optional, nul-
lable

Second D gene with allele. If referring to a known ref-
erence sequence in a database the relevant gene/allele
nomenclature should be followed (e.g., IGHD3-10*01
if using IMGT/GENE-DB).

j_call string required, nul-
lable

J gene with allele. If referring to a known reference
sequence in a database the relevant gene/allele nomen-
clature should be followed (e.g., IGHJ4*02 if using
IMGT/GENE-DB).

c_call string optional, nul-
lable

Constant region gene with allele. If referring to a known
reference sequence in a database the relevant gene/allele
nomenclature should be followed (e.g., IGHG1*01 if
using IMGT/GENE-DB).

sequence_alignmentstring required, nul-
lable

Aligned portion of query sequence, including any indel
corrections or numbering spacers, such as IMGT-gaps.
Typically, this will include only the V(D)J region, but
that is not a requirement.

sequence_alignment_aastring optional, nul-
lable

Amino acid translation of the aligned query sequence.

germline_alignmentstring required, nul-
lable

Assembled, aligned, full-length inferred germline
sequence spanning the same region as the se-
quence_alignment field (typically the V(D)J region) and
including the same set of corrections and spacers (if
any).

germline_alignment_aastring optional, nul-
lable

Amino acid translation of the assembled germline se-
quence.

junction string required, nul-
lable

Junction region nucleotide sequence, where the junction
is defined as the CDR3 plus the two flanking conserved
codons.

junction_aa string required, nul-
lable

Amino acid translation of the junction.

Continued on next page

2.3. AIRR Standards 75

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
np1 string optional, nul-

lable
Nucleotide sequence of the combined N/P region be-
tween the V gene and first D gene alignment or between
the V gene and J gene alignments.

np1_aa string optional, nul-
lable

Amino acid translation of the np1 field.

np2 string optional, nul-
lable

Nucleotide sequence of the combined N/P region be-
tween either the first D gene and J gene alignments or
the first D gene and second D gene alignments.

np2_aa string optional, nul-
lable

Amino acid translation of the np2 field.

np3 string optional, nul-
lable

Nucleotide sequence of the combined N/P region be-
tween the second D gene and J gene alignments.

np3_aa string optional, nul-
lable

Amino acid translation of the np3 field.

cdr1 string optional, nul-
lable

Nucleotide sequence of the aligned CDR1 region.

cdr1_aa string optional, nul-
lable

Amino acid translation of the cdr1 field.

cdr2 string optional, nul-
lable

Nucleotide sequence of the aligned CDR2 region.

cdr2_aa string optional, nul-
lable

Amino acid translation of the cdr2 field.

cdr3 string optional, nul-
lable

Nucleotide sequence of the aligned CDR3 region.

cdr3_aa string optional, nul-
lable

Amino acid translation of the cdr3 field.

fwr1 string optional, nul-
lable

Nucleotide sequence of the aligned FWR1 region.

fwr1_aa string optional, nul-
lable

Amino acid translation of the fwr1 field.

fwr2 string optional, nul-
lable

Nucleotide sequence of the aligned FWR2 region.

fwr2_aa string optional, nul-
lable

Amino acid translation of the fwr2 field.

fwr3 string optional, nul-
lable

Nucleotide sequence of the aligned FWR3 region.

fwr3_aa string optional, nul-
lable

Amino acid translation of the fwr3 field.

fwr4 string optional, nul-
lable

Nucleotide sequence of the aligned FWR4 region.

fwr4_aa string optional, nul-
lable

Amino acid translation of the fwr4 field.

v_score number optional, nul-
lable

Alignment score for the V gene.

v_identity number optional, nul-
lable

Fractional identity for the V gene alignment.

v_support number optional, nul-
lable

V gene alignment E-value, p-value, likelihood, proba-
bility or other similar measure of support for the V gene
assignment as defined by the alignment tool.

Continued on next page

76 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
v_cigar string required, nul-

lable
CIGAR string for the V gene alignment.

d_score number optional, nul-
lable

Alignment score for the first or only D gene alignment.

d_identity number optional, nul-
lable

Fractional identity for the first or only D gene align-
ment.

d_support number optional, nul-
lable

D gene alignment E-value, p-value, likelihood, proba-
bility or other similar measure of support for the first or
only D gene as defined by the alignment tool.

d_cigar string required, nul-
lable

CIGAR string for the first or only D gene alignment.

d2_score number optional, nul-
lable

Alignment score for the second D gene alignment.

d2_identity number optional, nul-
lable

Fractional identity for the second D gene alignment.

d2_support number optional, nul-
lable

D gene alignment E-value, p-value, likelihood, proba-
bility or other similar measure of support for the second
D gene as defined by the alignment tool.

d2_cigar string optional, nul-
lable

CIGAR string for the second D gene alignment.

j_score number optional, nul-
lable

Alignment score for the J gene alignment.

j_identity number optional, nul-
lable

Fractional identity for the J gene alignment.

j_support number optional, nul-
lable

J gene alignment E-value, p-value, likelihood, probabil-
ity or other similar measure of support for the J gene
assignment as defined by the alignment tool.

j_cigar string required, nul-
lable

CIGAR string for the J gene alignment.

c_score number optional, nul-
lable

Alignment score for the C gene alignment.

c_identity number optional, nul-
lable

Fractional identity for the C gene alignment.

c_support number optional, nul-
lable

C gene alignment E-value, p-value, likelihood, proba-
bility or other similar measure of support for the C gene
assignment as defined by the alignment tool.

c_cigar string optional, nul-
lable

CIGAR string for the C gene alignment.

v_sequence_startinteger optional, nul-
lable

Start position of the V gene in the query sequence (1-
based closed interval).

v_sequence_end integer optional, nul-
lable

End position of the V gene in the query sequence (1-
based closed interval).

v_germline_startinteger optional, nul-
lable

Alignment start position in the V gene reference se-
quence (1-based closed interval).

v_germline_end integer optional, nul-
lable

Alignment end position in the V gene reference se-
quence (1-based closed interval).

v_alignment_startinteger optional, nul-
lable

Start position of the V gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

Continued on next page

2.3. AIRR Standards 77

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
v_alignment_end integer optional, nul-

lable
End position of the V gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

d_sequence_startinteger optional, nul-
lable

Start position of the first or only D gene in the query
sequence. (1-based closed interval).

d_sequence_end integer optional, nul-
lable

End position of the first or only D gene in the query
sequence. (1-based closed interval).

d_germline_startinteger optional, nul-
lable

Alignment start position in the D gene reference se-
quence for the first or only D gene (1-based closed in-
terval).

d_germline_end integer optional, nul-
lable

Alignment end position in the D gene reference se-
quence for the first or only D gene (1-based closed in-
terval).

d_alignment_startinteger optional, nul-
lable

Start position of the first or only D gene in both the
sequence_alignment and germline_alignment fields (1-
based closed interval).

d_alignment_end integer optional, nul-
lable

End position of the first or only D gene in both the
sequence_alignment and germline_alignment fields (1-
based closed interval).

d2_sequence_startinteger optional, nul-
lable

Start position of the second D gene in the query se-
quence (1-based closed interval).

d2_sequence_end integer optional, nul-
lable

End position of the second D gene in the query sequence
(1-based closed interval).

d2_germline_startinteger optional, nul-
lable

Alignment start position in the second D gene reference
sequence (1-based closed interval).

d2_germline_end integer optional, nul-
lable

Alignment end position in the second D gene reference
sequence (1-based closed interval).

d2_alignment_startinteger optional, nul-
lable

Start position of the second D gene alignment in both
the sequence_alignment and germline_alignment fields
(1-based closed interval).

d2_alignment_endinteger optional, nul-
lable

End position of the second D gene alignment in both
the sequence_alignment and germline_alignment fields
(1-based closed interval).

j_sequence_startinteger optional, nul-
lable

Start position of the J gene in the query sequence (1-
based closed interval).

j_sequence_end integer optional, nul-
lable

End position of the J gene in the query sequence (1-
based closed interval).

j_germline_startinteger optional, nul-
lable

Alignment start position in the J gene reference se-
quence (1-based closed interval).

j_germline_end integer optional, nul-
lable

Alignment end position in the J gene reference sequence
(1-based closed interval).

j_alignment_startinteger optional, nul-
lable

Start position of the J gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

j_alignment_end integer optional, nul-
lable

End position of the J gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

cdr1_start integer optional, nul-
lable

CDR1 start position in the query sequence (1-based
closed interval).

Continued on next page

78 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
cdr1_end integer optional, nul-

lable
CDR1 end position in the query sequence (1-based
closed interval).

cdr2_start integer optional, nul-
lable

CDR2 start position in the query sequence (1-based
closed interval).

cdr2_end integer optional, nul-
lable

CDR2 end position in the query sequence (1-based
closed interval).

cdr3_start integer optional, nul-
lable

CDR3 start position in the query sequence (1-based
closed interval).

cdr3_end integer optional, nul-
lable

CDR3 end position in the query sequence (1-based
closed interval).

fwr1_start integer optional, nul-
lable

FWR1 start position in the query sequence (1-based
closed interval).

fwr1_end integer optional, nul-
lable

FWR1 end position in the query sequence (1-based
closed interval).

fwr2_start integer optional, nul-
lable

FWR2 start position in the query sequence (1-based
closed interval).

fwr2_end integer optional, nul-
lable

FWR2 end position in the query sequence (1-based
closed interval).

fwr3_start integer optional, nul-
lable

FWR3 start position in the query sequence (1-based
closed interval).

fwr3_end integer optional, nul-
lable

FWR3 end position in the query sequence (1-based
closed interval).

fwr4_start integer optional, nul-
lable

FWR4 start position in the query sequence (1-based
closed interval).

fwr4_end integer optional, nul-
lable

FWR4 end position in the query sequence (1-based
closed interval).

v_sequence_alignmentstring optional, nul-
lable

Aligned portion of query sequence assigned to the V
gene, including any indel corrections or numbering
spacers.

v_sequence_alignment_aastring optional, nul-
lable

Amino acid translation of the v_sequence_alignment
field.

d_sequence_alignmentstring optional, nul-
lable

Aligned portion of query sequence assigned to the first
or only D gene, including any indel corrections or num-
bering spacers.

d_sequence_alignment_aastring optional, nul-
lable

Amino acid translation of the d_sequence_alignment
field.

d2_sequence_alignmentstring optional, nul-
lable

Aligned portion of query sequence assigned to the sec-
ond D gene, including any indel corrections or number-
ing spacers.

d2_sequence_alignment_aastring optional, nul-
lable

Amino acid translation of the d2_sequence_alignment
field.

j_sequence_alignmentstring optional, nul-
lable

Aligned portion of query sequence assigned to the J
gene, including any indel corrections or numbering
spacers.

j_sequence_alignment_aastring optional, nul-
lable

Amino acid translation of the j_sequence_alignment
field.

c_sequence_alignmentstring optional, nul-
lable

Aligned portion of query sequence assigned to the con-
stant region, including any indel corrections or number-
ing spacers.

Continued on next page

2.3. AIRR Standards 79

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
c_sequence_alignment_aastring optional, nul-

lable
Amino acid translation of the c_sequence_alignment
field.

v_germline_alignmentstring optional, nul-
lable

Aligned V gene germline sequence spanning the same
region as the v_sequence_alignment field and including
the same set of corrections and spacers (if any).

v_germline_alignment_aastring optional, nul-
lable

Amino acid translation of the v_germline_alignment
field.

d_germline_alignmentstring optional, nul-
lable

Aligned D gene germline sequence spanning the same
region as the d_sequence_alignment field and including
the same set of corrections and spacers (if any).

d_germline_alignment_aastring optional, nul-
lable

Amino acid translation of the d_germline_alignment
field.

d2_germline_alignmentstring optional, nul-
lable

Aligned D gene germline sequence spanning the same
region as the d2_sequence_alignment field and includ-
ing the same set of corrections and spacers (if any).

d2_germline_alignment_aastring optional, nul-
lable

Amino acid translation of the d2_germline_alignment
field.

j_germline_alignmentstring optional, nul-
lable

Aligned J gene germline sequence spanning the same
region as the j_sequence_alignment field and including
the same set of corrections and spacers (if any).

j_germline_alignment_aastring optional, nul-
lable

Amino acid translation of the j_germline_alignment
field.

c_germline_alignmentstring optional, nul-
lable

Aligned constant region germline sequence spanning
the same region as the c_sequence_alignment field and
including the same set of corrections and spacers (if
any).

c_germline_alignment_aastring optional, nul-
lable

Amino acid translation of the c_germline_aligment
field.

junction_length integer optional, nul-
lable

Number of nucleotides in the junction sequence.

junction_aa_lengthinteger optional, nul-
lable

Number of amino acids in the junction sequence.

np1_length integer optional, nul-
lable

Number of nucleotides between the V gene and first D
gene alignments or between the V gene and J gene align-
ments.

np2_length integer optional, nul-
lable

Number of nucleotides between either the first D gene
and J gene alignments or the first D gene and second D
gene alignments.

np3_length integer optional, nul-
lable

Number of nucleotides between the second D gene and
J gene alignments.

n1_length integer optional, nul-
lable

Number of untemplated nucleotides 5’ of the first or
only D gene alignment.

n2_length integer optional, nul-
lable

Number of untemplated nucleotides 3’ of the first or
only D gene alignment.

n3_length integer optional, nul-
lable

Number of untemplated nucleotides 3’ of the second D
gene alignment.

p3v_length integer optional, nul-
lable

Number of palindromic nucleotides 3’ of the V gene
alignment.

p5d_length integer optional, nul-
lable

Number of palindromic nucleotides 5’ of the first or
only D gene alignment.

Continued on next page

80 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Table 2 – continued from previous page
Name Type Attributes Definition
p3d_length integer optional, nul-

lable
Number of palindromic nucleotides 3’ of the first or
only D gene alignment.

p5d2_length integer optional, nul-
lable

Number of palindromic nucleotides 5’ of the second D
gene alignment.

p3d2_length integer optional, nul-
lable

Number of palindromic nucleotides 3’ of the second D
gene alignment.

p5j_length integer optional, nul-
lable

Number of palindromic nucleotides 5’ of the J gene
alignment.

consensus_count integer optional, nul-
lable

Number of reads contributing to the (UMI) consensus
for this sequence. For example, the sum of the num-
ber of reads for all UMIs that contribute to the query
sequence.

duplicate_count integer optional, nul-
lable

Copy number or number of duplicate observations for
the query sequence. For example, the number of UMIs
sharing an identical sequence or the number of identical
observations of this sequence absent UMIs.

cell_id string optional, iden-
tifier, nullable

Identifier defining the cell of origin for the query se-
quence.

clone_id string optional, iden-
tifier, nullable

Clonal cluster assignment for the query sequence.

repertoire_id string optional, iden-
tifier, nullable

Identifier to the associated repertoire in study metadata.

sample_processing_idstring optional, iden-
tifier, nullable

Identifier to the sample processing object in the reper-
toire metadata for this rearrangement. If the repertoire
has a single sample then this field may be empty or miss-
ing. If the repertoire has multiple samples then this field
may be empty or missing if the sample cannot be differ-
entiated or the relationship is not maintained by the data
processing.

data_processing_idstring optional, iden-
tifier, nullable

Identifier to the data processing object in the repertoire
metadata for this rearrangement. If this field is empty
than the primary data processing object is assumed.

rearrangement_idstring DEPRECATED Identifier for the Rearrangement object. May be iden-
tical to sequence_id, but will usually be a universally
unique record locator for database applications.

rearrangement_set_idstring DEPRECATED Identifier for grouping Rearrangement objects.
germline_databasestring DEPRECATED Source of germline V(D)J genes with version number or

date accessed.

Alignment Schema (Experimental)

An Alignment is the output from a V(D)J assignment process for a single V, D, J, or C gene for a sequence. It
is not necessary that the V(D)J assignment process performs a sequence alignment algorithm, as the schema can
support any algorithmic process. Multiple Alignment records are supported and expected for a single sequence with
context-dependent fields (score, identity, support, rank) for assessing the quality of assignments that can
vary considerably in definition based on the methodology used.

Note, this schema definition is still experimental and should not be considered final.

2.3. AIRR Standards 81

airr-standards Documentation, Release 1.3

File Format Specification

The format specification describes the file format and details on how to structure this data.

Fields

Download as TSV

Name Type Attributes Definition
sequence_id string required, nul-

lable
Unique query sequence identifier within the file. Most
often this will be the input sequence header or a sub-
string thereof, but may also be a custom identifier de-
fined by the tool in cases where query sequences have
been combined in some fashion prior to alignment.

segment string required, nul-
lable

The segment for this alignment. One of V, D, J or C.

rev_comp boolean optional, nul-
lable

Alignment result is from the reverse complement of the
query sequence.

call string required, nul-
lable

Gene assignment with allele.

score number required, nul-
lable

Alignment score.

identity number optional, nul-
lable

Alignment fractional identity.

support number optional, nul-
lable

Alignment E-value, p-value, likelihood, probability or
other similar measure of support for the gene assign-
ment as defined by the alignment tool.

cigar string required, nul-
lable

Alignment CIGAR string.

sequence_start integer optional, nul-
lable

Start position of the segment in the query sequence (1-
based closed interval).

sequence_end integer optional, nul-
lable

End position of the segment in the query sequence (1-
based closed interval).

germline_start integer optional, nul-
lable

Alignment start position in the reference sequence (1-
based closed interval).

germline_end integer optional, nul-
lable

Alignment end position in the reference sequence (1-
based closed interval).

rank integer optional, nul-
lable

Alignment rank.

rearrangement_idstring DEPRECATED Identifier for the Rearrangement object. May be iden-
tical to sequence_id, but will usually be a universally
unique record locator for database applications.

data_processing_idstring optional, nul-
lable

Identifier to the data processing object in the repertoire
metadata for this rearrangement. If this field is empty
than the primary data processing object is assumed.

germline_databasestring DEPRECATED Source of germline V(D)J genes with version number or
date accessed.

82 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Clone and Lineage Tree Schema (Experimental)

A unique inferred clone object that has been constructed within a single data processing for a single repertoire and a
subset of its sequences and/or rearrangements.

A clone object may have one or more inferred lineage trees. Each tree is represented by a Newick string for its edges
and a dictionary of node objects.

File Format Specification

The file format has not been specified yet.

Clone Fields

Download as TSV

2.3. AIRR Standards 83

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
clone_id string required, nul-

lable
Identifier for the clone.

repertoire_id string optional, nul-
lable

Identifier to the associated repertoire in study metadata.

data_processing_idstring optional, nul-
lable

Identifier of the data processing object in the repertoire
metadata for this clone.

sequences array of string optional, nul-
lable

List sequence_id strings that act as keys to the Rear-
rangement records for members of the clone.

v_call string optional, nul-
lable

V gene with allele of the inferred ancestral of the clone.
For example, IGHV4-59*01.

d_call string optional, nul-
lable

D gene with allele of the inferred ancestor of the clone.
For example, IGHD3-10*01.

j_call string optional, nul-
lable

J gene with allele of the inferred ancestor of the clone.
For example, IGHJ4*02.

junction string optional, nul-
lable

Nucleotide sequence for the junction region of the in-
ferred ancestor of the clone, where the junction is de-
fined as the CDR3 plus the two flanking conserved
codons.

junction_aa string optional, nul-
lable

Amino acid translation of the junction.

junction_length integer optional, nul-
lable

Number of nucleotides in the junction.

junction_aa_lengthinteger optional, nul-
lable

Number of amino acids in junction_aa.

germline_alignmentstring required, nul-
lable

Assembled, aligned, full-length inferred ancestor of
the clone spanning the same region as the se-
quence_alignment field of nodes (typically the V(D)J
region) and including the same set of corrections and
spacers (if any).

germline_alignment_aastring optional, nul-
lable

Amino acid translation of germline_alignment.

v_alignment_startinteger optional, nul-
lable

Start position in the V gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

v_alignment_end integer optional, nul-
lable

End position in the V gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

d_alignment_startinteger optional, nul-
lable

Start position of the D gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

d_alignment_end integer optional, nul-
lable

End position of the D gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

j_alignment_startinteger optional, nul-
lable

Start position of the J gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

j_alignment_end integer optional, nul-
lable

End position of the J gene alignment in both the se-
quence_alignment and germline_alignment fields (1-
based closed interval).

junction_start integer optional, nul-
lable

Junction region start position in the alignment (1-based
closed interval).

junction_end integer optional, nul-
lable

Junction region end position in the alignment (1-based
closed interval).

sequence_count integer optional, nul-
lable

Number of Rearrangement records (sequences) in-
cluded in this clone

seed_id string optional, nul-
lable

sequence_id of the seed sequence. Empty string (or
null) if there is no seed sequence.

84 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Tree Fields

Download as TSV

Name Type Attributes Definition
tree_id string required, nul-

lable
Identifier for the tree.

clone_id string required, nul-
lable

Identifier for the clone.

newick string required, nul-
lable

Newick string of the tree edges.

nodes object optional, nul-
lable

Dictionary of nodes in the tree, keyed by sequence_id
string

Node Fields

Download as TSV

Name Type Attributes Definition
sequence_id string required, nul-

lable
Identifier for this node that matches the identifier in the
newick string and, where possible, the sequence_id in
the source repertoire.

sequence_alignmentstring optional, nul-
lable

Nucleotide sequence of the node, aligned to the
germline_alignment for this clone, including including
any indel corrections or spacers.

junction string optional, nul-
lable

Junction region nucleotide sequence for the node, where
the junction is defined as the CDR3 plus the two flank-
ing conserved codons.

junction_aa string optional, nul-
lable

Amino acid translation of the junction.

Cell Schema (Experimental)

The cell object acts as point of reference for all data that can be related to an individual cell, either by direct observation
or inference.

File Format Specification

The file format has not been specified yet.

Cell Fields

Download as TSV

2.3. AIRR Standards 85

airr-standards Documentation, Release 1.3

Name Type Attributes Definition
cell_id string required Identifier defining the cell of origin for the query se-

quence.
rearrangements array of string required, nul-

lable
Array of sequence identifiers defined for the Rearrange-
ment object

receptors array of string optional, nul-
lable

Array of receptor identifiers defined for the Receptor
object

repertoire_id string required, nul-
lable

Identifier to the associated repertoire in study metadata.

data_processing_idstring optional, nul-
lable

Identifier of the data processing object in the repertoire
metadata for this clone.

expression_study_methodstring optional, nul-
lable

keyword describing the methodology used to assess ex-
pression. This values for this field MUST come from a
controlled vocabulary

expression_raw_doistring optional, nul-
lable

DOI of raw data set containing the current event

expression_indexstring optional, nul-
lable

Index addressing the current event within the raw data
set.

expression_tabulararray of object optional, nul-
lable

Expression definitions for single-cell

virtual_pairing boolean required, nul-
lable

boolean to indicate if pairing was inferred.

2.3.3 AIRR Software WG - Guidance for AIRR Software Tools

Version 1.0

AIRR Software WG - Compliance Checklist for AIRR Software Tools

Version 1.0 (when finalised)

This questionnaire should be read in conjunction with the AIRR Software WG - Guidance for AIRR Software Tools.

To submit your tool for ratification against the standard, please send the completed questionnaire to soft-
ware@airrc.antibodysociety.org.

Please provide comments in italics in each response box where these would be helpful to facilitate understanding. We
kindly ask for a brief explanatory comment if your answer to a question is no or not applicable.

Name of Tool:

Contact Name/Institution:

Contact email:

86 Chapter 2. Table of Contents

mailto:software@airrc.antibodysociety.org
mailto:software@airrc.antibodysociety.org

airr-standards Documentation, Release 1.3

Re-
quire-
ment
Ref.

Question Response

1 Where is the source code published (please provide a link)?
2 Does the tool support AIRR Data Representations standards?

Please list any other standard data formats that are supported
yes/no

3 Does the distribution include example data?
Is the example data in MiAIRR format, where applicable?
Does the tool provide automated checks for expected output from example
data?

yes/no
yes/no/not applicable
yes/no

4 Does the output of the tool include a summary of the run parameters? yes/no
5 Is a container build file provided?

Container technology used?
Is the container automatically built as new versions are released?
Does the automated build run the tool against the example data and test the
output?

yes/no
Docker/Singularity/Other
(please specify)
yes/no
yes/no

6 Where can users see what level of support is available? (Please provide a link)
7 Under what software licence is the tool published? (please provide the name

of the licence (e.g. GPL, MIT) or a link

AIRR Software WG - List of Tools Certified as Compliant

The following tools have been certified as compliant with v1.0 of the guidelines:

Software Version Support Reference
SONAR 3 Output Schramm et al. Front Immunol,

2016.
ImmuneDB 0.29.10 Input Rosenfeld et al. Front Immunol,

2018,
Scirpy 0.4.2 Input Sturm et al. Bioinformatics,

2020,

Evaluation Data Sets

The Software WG is working on the development and evaluation of simulated data sets.

Lists of published real-world datasets are maintained in the AIRR Forum Wiki.

Introduction

The Adaptive Immune Receptor Repertoire (AIRR) Community will benefit greatly from cooperation among groups
developing software tools and resources for AIRR research. The goal of the AIRR Software Working Group is to pro-
mote standards for AIRR software tools and resources in order to enable rigorous and reproducible immune repertoire
research at the largest scale possible. As one contribution to this goal, we have established the following standards for
software tools. Authors whose tools comply with this standard will, subject to ratification from the AIRR Software
WG, be permitted to advertise their tools as being AIRR-compliant.

2.3. AIRR Standards 87

https://github.com/scharch/SONAR
https://doi.org/doi:10.3389/fimmu.2016.00372
https://doi.org/doi:10.3389/fimmu.2016.00372
https://immunedb.com
https://doi.org/10.3389/fimmu.2018.02107
https://doi.org/10.3389/fimmu.2018.02107
https://github.com/icbi-lab/scirpy
https://doi.org/10.1093/bioinformatics/btaa611
https://doi.org/10.1093/bioinformatics/btaa611
https://b-t.cr/c/wiki
http://airr-community.org/
https://www.antibodysociety.org/airrc/working_groups/software/

airr-standards Documentation, Release 1.3

Requirements

Tools must:

1. Be published in source code form, and hosted on a publicly available repository with a clear versioning system.

2. Support community-curated standard file formats and strive for modularity and interoperability with other tools.
In particular, tools must read and write AIRR Data Representations standards corresponding to their tool.

3. Include example data (in AIRR standard formats where applicable) and an automated check for expected output
from that data, in order to provide a minimal example of functionality allowing users to check that the software
is performing as described.

4. Provide information about run parameters as part of the output.

5. Provide a container build file that can be used to create an image which encapsulates the software tool, its
dependencies, and required run environment. This needs to be remotely and automatically built. The build
should conclude by running the example data through the tool (see point 3) and confirming that the expected
output is obtained. We currently recognize two software solutions, although we will adapt as software evolves:

a. A Dockerfile that automatically builds a container image on Docker Hub.

b. A Singularity recipe file that automatically builds a container image on Singularity Hub.

6. Provide user support, clearly stating which level of support users can expect, and how and from whom to obtain
it.

Recommendations

We suggest software tools be published under a license that permits free access, use, modification, and sharing, such as
GPL, Apache 2.0, or MIT. However, we understand that this depends on institutional intellectual property restrictions,
thus it is a recommendation rather than a requirement.

Explanatory Notes

Open Source Software and Versioned Repositories

Software tools in the AIRR field are evolving rapidly. In the interests of reproducibility and transparency, published
work should be based on tools (and versions of tools) that can be obtained easily by other researchers in the future. To
that end, AIRR compliant tools must be published in open repositories such as GitHub or Bitbucket, and we encourage
publishing users to provide specifics on the version and configuration of tools that have been employed.

Community-Curated File Formats

The AIRR Data Representation Working Group has defined standards for immune receptor repertoire sequencing
datasets. Software tool authors are requested to support these standards as much as possible, for applicable data sets.
The currently implemented standard covers submission of reads to NCBI repositories (BioProject, BioSample, SRA
and Genbank) and annotated immune receptor rearrangements. Tool authors can assist by easing/guiding the process
of submission as much as possible.

Example Data and Checks

Because the installation and operation of the tools in this field may be complex, we require example data and details
of expected output, so that users can confirm that their installation is functioning as expected. Furthermore, metadata

88 Chapter 2. Table of Contents

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/
https://www.sylabs.io/docs/
https://github.com/singularityhub/singularityhub.github.io/wiki/Automated-Build
https://singularity-hub.org/
https://github.com
https://bitbucket.org

airr-standards Documentation, Release 1.3

(for example, germline gene libraries) and other software dependencies should be checked when the tool runs, and in-
formative error messages issued if necessary. A means should be provided to check the expected output automatically.

Dependencies and Containers

Containers encapsulate everything needed to run a piece of software into a single convenient executable that is largely
independent of the user’s software environment. For the following purposes, providers of AIRR-compliant tools must
provide a containerized implementation (based on a published build script as described above) as one download option
that users can choose:

• Containers allow users to use and evaluate a tool easily and reproduce results, without the need to resolve
dependencies or configure the environment.

• Having these containers be automatically built also provides a self-validated way to understand the fine details
of installation from a known starting point.

To ensure that containers are up to date, they must be built automatically when the current release version of the tool
is updated. We will use automated builds on Docker Hub and Singularity Hub for this purpose. The corresponding
build files document dependencies clearly, and make it easy for the maintainer to keep the container’s dependencies
up to date in subsequent releases.

An example Docker container is provided on the Software WG Github Repository. This example encapsulates Ig-
BLAST, and implements the bioboxes command-line standard.

Support Statements

Tool authors must provide support for the tool. They must state explicitly what level of support is provided, and
explain how support can be obtained. We recommend a method such as the issues tracker on Github, that publishes
support requests transparently and links resolutions to specific versions or releases. Users are advised to check that the
level of support and the frequency of software updates matches their expectations before committing to a tool.

Analysis Workflows

• At the moment, we do not endorse a specific workflow technology standard:

– Technology is evolving too rapidly for us to commit to a particular workflow.

– Typically, AIRR analysis tools have many options and modes, which would make it difficult to support a
“plug and play” environment without unduly restricting functionality.

• As tools and workflows evolve, we will keep the position under review and may make stronger technology
recommendations in the future.

• We strongly encourage authors of tools to provide concrete, documented, examples of workflows that employ
their tools, together with sample input and output data.

• Likewise we encourage authors of research publications to provide documented workflows that will enable
interested readers to reproduce the results.

Ratification

Authors may submit tools to the AIRR Software WG requesting ratification against the standard. The submitter should
provide a completed copy of the AIRR Software WG - Compliance Checklist for AIRR Software Tools to evidence
reviewable and itemised evidence of compliance with each Requirement listed above.

2.3. AIRR Standards 89

https://github.com/airr-community/software-wg
https://www.ncbi.nlm.nih.gov/igblast/
https://www.ncbi.nlm.nih.gov/igblast/
http://bioboxes.org

airr-standards Documentation, Release 1.3

The Software WG will, where appropriate, issue a Certificate of Compliance, stating the version of the tool reviewed
and the version of the Standard with which compliance was ratified. After receiving a Certificate, authors will be
entitled to claim compliance with the Standard, and may incorporate any artwork provided by AIRR for that purpose.

The Software WG will maintain and publish a list of compliant software.

If a tool does not achieve ratification, the Software WG will provide an explanation. The Software WG encourages
resubmission once issues have been resolved.

Authors must re-submit tools for ratification following major upgrades or substantial modifications. The Software
WG may, at its discretion, request resubmission at any time. If a certified tool subsequently fails ratification, or is not
re-submitted in response to a request from the Software WG, AIRR compliance may no longer be claimed and the
associated artwork may no longer be used.

The Software WG may, at its discretion, issue a new version of this standard at any time. Tools certified against
previous version(s) of the standard may continue to claim compliance with those versions and to use the associated
artwork. Authors wishing to claim compliance with the new version must submit a new request for certification and
may not claim compliance with the new version, or use associated artwork, until and unless certification is obtained.

2.3.4 AIRR Data Commons API V1

The use of high-throughput sequencing for profiling B-cell and T-cell receptors has resulted in a rapid increase in data
generation. It is timely, therefore, for the Adaptive Immune Receptor Repertoire (AIRR) community to establish a clear
set of community-accepted data and metadata standards; analytical tools; and policies and practices for infrastructure
to support data deposit, curation, storage, and use. Such actions are in accordance with international funder and journal
policies that promote data deposition and data sharing – at a minimum, data on which scientific publications are based
should be made available immediately on publication. Data deposit in publicly accessible databases ensures that
published results may be validated. Such deposition also facilitates reuse of data for the generation of new hypotheses
and new knowledge.

The AIRR Common Repository Working Group (CRWG) developed a set of recommendations (v0.6.0) that promote
the deposit, sharing, and use of AIRR sequence data. These recommendations were refined following community dis-
cussions at the AIRR 2016 and 2017 Community Meetings and were approved through a vote by the AIRR Community
at the AIRR Community Meeting in December 2017.

Overview

The AIRR Data Commons (ADC) API provides programmatic access to query and download AIRR-seq data. The
ADC API uses JSON as its communication format, and standard HTTP methods like GET and POST. The ADC API
is read-only and the mechanism of inclusion of AIRR-seq studies into a data repository is left up to the repository.

This documentation explains how to construct and execute API requests and interpret API responses.

API Endpoints

The ADC API is versioned with the version number (v1) as part of the base path for all endpoints. Each ADC API
endpoint represents specific functionality as summarized in the following table:

90 Chapter 2. Table of Contents

https://github.com/airr-community/common-repo-wg/blob/v0.6.0/recommendations.md

airr-standards Documentation, Release 1.3

Endpoint Type HTTPDescription
/v1 Service status GET Returns success if API service is running.
/v1/info Service information GET Upon success, returns service information such as name,

version, etc.
/v1/
repertoire/
{repertoire_id}

Retrieve a reper-
toire given its
repertoire_id

GET Upon success, returns the Repertoire information in
JSON according to the Repertoire schema.

/v1/repertoire Query repertoires POST Upon success, returns a list of Repertoires in JSON
according to the Repertoire schema.

/v1/
rearrangement/
{sequence_id}

Retrieve a rear-
rangement given its
sequence_id

GET Upon success, returns the Rearrangement informa-
tion in JSON format according to the Rearrangement
schema.

/v1/
rearrangement

Query rearrangements POST Upon success, returns a list of Rearrangements in
JSON or AIRR TSV format according to the Rearrange-
ment schema.

Authentication

The ADC API currently does not define an authentication method. Future versions of the API will provide an authen-
tication method so data repositories can support query and download of controlled-access data.

Search and Retrieval

The AIRR Data Commons API specifies endpoints for searching and retrieving AIRR-seq data sets stored in an AIRR-
compliant Data Repository according to the AIRR Data Model. This documentation describes Version 1 of the API.
The general format of requests and associated parameters are described below.

The design of the AIRR Data Commons API was greatly inspired by National Cancer Institute’s Genomic Data Com-
mons (GDC) API.

Components of a Request

The ADC API has two classes of endpoints. The endpoints that respond to GET requests are simple services that
require few or no parameters. While, the endpoints that response to POST requests are the main query services and
provide many parameters for specifying the query as well as the data in the API response.

A typical POST query request specifies the following parameters:

• The filters parameter specifies the query.

• The from and size parameters specify the number of results to skip and the maximum number of results to
be returned in the response.

• The fields parameter specifies which data elements to be returned in the response. By default all fields (AIRR
and non-AIRR) stored in the data repository are returned. This can vary between data repositories based upon
how the repository decides to store blank or null fields, so the fields and/or include_fields parameter
should be used to guarantee the existence of data elements in the response.

• The include_fields parameter specifies the set of AIRR fields to be included in the response. This param-
eter can be used in conjunction with the fields parameter, in which case the list of fields is merged. This is
a mechanism to ensure that specific, well-defined sets of AIRR data elements are returned without requiring all
of those fields to be individually provided in the fields parameter.

The sets that can be requested are summarized in the table below.

2.3. AIRR Standards 91

https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/

airr-standards Documentation, Release 1.3

include_fields MiAIRR AIRR required AIRR identifiers other AIRR fields
miairr Y some N N
airr-core Y Y Y N
airr-schema Y Y Y Y

Service Status Example

The following is an example GET request to check that the service API is available for VDJServer’s data repository.

curl https://vdjserver.org/airr/v1

The response should indicate success.

{"result":"success"}

Service Info Example

The following is an example GET request to get information about the service.

curl https://vdjserver.org/airr/v1

The response provides various information.

{
"name": "adc-api-js-mongodb",
"description": "AIRR Data Commons API reference implementation",
"version": "1.0.0",
"airr_schema_version": 1.3,
"max_size": 1000,
"max_query_size": 2097152,
"contact": {
"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
}

Query Repertoire Example

The following is an example POST request to the repertoire endpoint of the ADC API. It queries for repertoires
of human TCR beta receptors (filters), skips the first 10 results (from), requests 5 results (size), and requests
only the repertoire_id field (fields).

curl --data @query1-2_repertoire.json https://vdjserver.org/airr/v1/repertoire

The content of the JSON payload.

{
"filters":{

"op":"and",
"content": [

{
"op":"=",
"content": {

"field":"subject.organism.id",
"value":"9606"

}
},

(continues on next page)

92 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

{
"op":"=",
"content": {

"field":"sample.pcr_target.pcr_target_locus",
"value":"TRB"

}
}

]
},
"from":10,
"size":5,
"fields":["repertoire_id"]

}

The response contains two JSON objects, an Info object that provides information about the API response and a
Repertoire object that contains the list of Repertoires that met the query search criteria. In this case, the query returns
a list of five repertoire identifiers. Note the Info object is based on the info block as specified in the OpenAPI v2.0
specification.

{
"Info":
{

"title": "AIRR Data Commons API reference implementation",
"description": "API response for repertoire query",
"version": 1.3,
"contact":
{

"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
},
"Repertoire":
[

{"repertoire_id": "4357957907784536551-242ac11c-0001-012"},
{"repertoire_id": "4476756703191896551-242ac11c-0001-012"},
{"repertoire_id": "6205695788196696551-242ac11c-0001-012"},
{"repertoire_id": "6393557657723736551-242ac11c-0001-012"},
{"repertoire_id": "7158276584776536551-242ac11c-0001-012"}

]
}

Endpoints

The ADC API V1 provides two primary endpoints for querying and retrieving AIRR-seq data. The repertoire
endpoint allows querying upon any field in the Repertoire schema including study, subject, sample, cell processing,
nucleic acid processing, sequencing run, raw sequencing files, and data processing information. Queries on the content
of raw sequencing files is not support but is supported on file attributes such as name, type and read information.
Queries on Rearrangements is provided by the rearrangement endpoint.

The standard workflow to retrieve all of the data for an AIRR-seq study involves performing a query on the
repertoire endpoint to retrieve the repertoires in the study, and one or more queries on the rearrangement
endpoint to download the rearrangement data for each repertoire. The endpoints are designed so the API response can
be saved directly into a file and be used by AIRR analysis tools, including the AIRR python and R reference libraries,
without requiring modifications or transformation of the data.

2.3. AIRR Standards 93

airr-standards Documentation, Release 1.3

Repertoire Endpoint

The repertoire endpoint provides access to all fields in the Repertoire schema. There are two type of endpoints;
one for retrieving a single repertoire given its identifier, and another for performing a query across all repertoires in
the data repository.

It is expected that the number of repertoires in a data repository will never become so large such that queries become
computationally expensive. A data repository might have thousands of repertoires across hundreds of studies, yet
such numbers are easily handled by modern databases. Based upon this, the ADC API does not place limits on the
repertoire endpoint for the fields that can be queried, the operators that can be used, or the number of results that
can be returned.

Retrieve a Single Repertoire

Given a repertoire_id, a single Repertoire object will be returned.

curl https://vdjserver.org/airr/v1/repertoire/4357957907784536551-242ac11c-0001-012

The response will provide the Repertoire data in JSON format.

{
"Info":
{

"title": "AIRR Data Commons API reference implementation",
"description": "API response for repertoire query",
"version": 1.3,
"contact":
{

"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
},
"Repertoire":
[
{

"repertoire_id":"4357957907784536551-242ac11c-0001-012",
"study":{

"study_id":"PRJNA300878",
"submitted_by":"Florian Rubelt",
"pub_ids":"PMID:27005435",
"lab_name":"Mark M. Davis",
"lab_address":"Stanford University",
"study_title":"Homo sapiens B and T cell repertoire - MZ twins"

},
"subject":{

"subject_id":"TW02A",
"synthetic":false,
"linked_subjects":"TW02B",
"organism":{"id":"9606","value":"Homo sapiens"},
"age":"25yr",
"link_type":"twin",
"sex":"F"

},
"sample":[

{"sample_id":"TW02A_T_memory_CD4",
"pcr_target":[{"pcr_target_locus":"TRB"}],
"cell_isolation":"FACS",
"read_length":"300",
"cell_phenotype":"expression of CD45RO and CCR7",

(continues on next page)

94 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

"cell_subset":"Memory CD4+ T cell",
"filename":"SRR2905669_R1.fastq.gz",
"single_cell":false,
"file_type":"fastq",
"tissue":"PBMC",
"template_class":"RNA",
"paired_filename":"SRR2905669_R2.fastq.gz",
"paired_read_direction":"reverse",
"read_direction":"forward",
"sequencing_platform":"Illumina MiSeq"}

],
"data_processing":[

{"data_processing_id":"4976322832749171176-242ac11c-0001-012",
"analysis_provenance_id":"651223970338378216-242ac11b-0001-007"}

]
}

]
}

Query against all Repertoires

A query in JSON format is passed in a POST request. This example queries for repertoires of human IG heavy chain
receptors for all studies in the data repository.

curl --data @query2_repertoire.json https://vdjserver.org/airr/v1/repertoire

The content of the JSON payload.

{
"filters":{

"op":"and",
"content": [

{
"op":"=",
"content": {

"field":"subject.organism.id",
"value":"9606"

}
},
{

"op":"=",
"content": {

"field":"sample.pcr_target.pcr_target_locus",
"value":"IGH"

}
}

]
}

}

The response will provide a list of Repertoires in JSON format. The example output is not provided here due to
its size.

Rearrangement Endpoint

The rearrangement endpoint provides access to all fields in the Rearrangement schema. There are two type of
endpoints; one for retrieving a single rearrangement given its identifier, and another for performing a query across all
rearrangements in the data repository.

2.3. AIRR Standards 95

airr-standards Documentation, Release 1.3

Unlike repertoire data, data repositories are expected to store millions or billions of rearrangement records, where
performing “simple” queries can quickly become computationally expensive. Data repositories will need to optimize
their databases for performance. Therefore, the ADC API does not require that all fields be queryable and only a
limited set of query capabilities must be supported. The queryable fields are described in the Fields section below.

Retrieve a Single Rearrangement

Given a sequence_id, a single Rearrangement object will be returned.

curl https://vdjserver.org/airr/v1/rearrangement/5d6fba725dca5569326aa104

The response will provide the Rearrangement data in JSON format.

{
"Info":
{

"title": "AIRR Data Commons API reference implementation",
"description": "API response for rearrangement query",
"version": 1.3,
"contact":
{

"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
},
"Rearrangement":
[
{

"sequence_id":"5d6fba725dca5569326aa104",
"repertoire_id":"1841923116114776551-242ac11c-0001-012",

"... remaining fields":"snipped for space"
}

]
}

Query against all Rearrangements

Supplying a repertoire_id, when it is known, should greatly speed up the query as it can significantly reduce the
amount of data to be searched, though it isn’t necessary.

This example queries for rearrangements with a specific junction amino acid sequence among a set of repertoires. A
limited set of fields is requested to be returned. The resultant data can be requested in JSON or AIRR TSV format.

curl --data @query1_rearrangement.json https://vdjserver.org/airr/v1/rearrangement

The content of the JSON payload.

{
"filters":{

"op":"and",
"content": [

{
"op":"in",
"content": {

"field":"repertoire_id",
"value":[

"2366080924918616551-242ac11c-0001-012",
"2541616238306136551-242ac11c-0001-012",

(continues on next page)

96 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

"1993707260355416551-242ac11c-0001-012",
"1841923116114776551-242ac11c-0001-012"

]
}

},
{

"op":"=",
"content": {

"field":"junction_aa",
"value":"CARDPRSYHAFDIW"

}
}

]
},
"fields":["repertoire_id","sequence_id","v_call","productive"],
"format":"tsv"

}

Here is the response in AIRR TSV format.

productive v_call sequence_id repertoire_id
true IGHV1-69*04 5d6fba725dca5569326aa106 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba725dca5569326aa11b 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*10 5d6fba725dca5569326aa149 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba735dca5569326aa245 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba735dca5569326aa274 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba735dca5569326aa27b 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba735dca5569326aa27c 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-24*01 5d6fba735dca5569326aa2a0 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba745dca5569326aa359 1841923116114776551-242ac11c-
→˓0001-012
true IGHV1-69*04 5d6fba745dca5569326aa408 1841923116114776551-242ac11c-
→˓0001-012

Request Parameters

The ADC API supports the follow query parameters. These are only applicable to the repertoire and
rearrangement query endpoints, i.e. the HTTP POST endpoints.

2.3. AIRR Standards 97

airr-standards Documentation, Release 1.3

Parameter Default Description
filters null Specifies logical expression for query critieria
format JSON Specifies the API response format: JSON, AIRR TSV
include_fields null Specifies the set of AIRR fields to be included in the response
fields null Specifies which fields to include in the response
from 0 Specifies the first record to return from a set of search results
size repository dependent Specifies the number of results to return
facets null Provide aggregate count information for the specified fields

Filters Query Parameter

The filters parameter enables passing complex query criteria to the ADC API. The parameter represents the query
in a JSON object.

A filters query consists of an operator (or a nested set of operators) with a set of field and value operands.
The query criteria as represented in a JSON object can be considered an expression tree data structure where internal
nodes are operators and child nodes are operands. The expression tree can be of any depth, and recursive algorithms
are typically used for tree traversal.

The following operators are support by the ADC API.

98 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Op-
er-
a-
tor

OperandsValue
Data
Types

Description Example

= field
and
value

string,
number,
inte-
ger, or
boolean

equals {“op”:”=”,”content”:{“field”:”junction_aa”,”value”:”CASSYIKLN”}}

!= field
and
value

string,
number,
inte-
ger, or
boolean

does not equal {“op”:”!=”,”content”:{“field”:”subject.organism.id”,”value”:”9606”}}

< field
and
value

number,
integer

less than {“op”:”<”,”content”:{“field”:”sample.cell_number”,”value”:1000}}

<= field
and
value

number,
integer

less than or equal {“op”:”<=”,”content”:{“field”:”sample.cell_number”,”value”:1000}}

> field
and
value

number,
integer

greater than {“op”:”>”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}}

>= field
and
value

number,
integer

greater than or
equal

{“op”:”>=”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}}

is
miss-
ing

field n/a field is missing
or is null

{“op”:”is missing”,”content”:{“field”:”sample.tissue”}}

is field n/a identical to “is
missing” opera-
tor, provided for
GDC compatibil-
ity

{“op”:”is”,”content”:{“field”:”sample.tissue”}}

is
not
miss-
ing

field n/a field is not miss-
ing and is not
null

{“op”:”is not missing”,”content”:{“field”:”sample.tissue”}}

not field n/a identical to “is
not missing” op-
erator, provided
for GDC compat-
ibility

{“op”:”not”,”content”:{“field”:”sample.tissue”}}

in field,
mul-
tiple
values
in a
list

array of
string,
num-
ber, or
integer

matches a string
or number in a
list

{“op”:”in”,”content”:{“field”:”subject.strain_name”,”value”:[“C57BL/6”,”BALB/c”,”NOD”]}}

ex-
clude

field,
mul-
tiple
values
in a
list

array of
string,
num-
ber, or
integer

does not match
any string or
number in a list

{“op”:”exclude”,”content”:{“field”:”subject.strain_name”,”value”:[“SCID”,”NOD”]}}

con-
tains

field,
value

string contains the sub-
string

{“op”:”contains”,”content”:{“field”:”study.study_title”,”value”:”cancer”}}

and mul-
tiple
opera-
tors

n/a logical AND {“op”:”and”,”content”:[{“op”:”!=”,”content”:{“field”:”subject.organism.id”,”value”:”9606”}},
{“op”:”>=”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}},
{“op”:”exclude”,”content”:{“field”:”subject.strain_name”,”value”:[“SCID”,”NOD”]}}
]}

or mul-
tiple
opera-
tors

n/a logical OR {“op”:”and”,”content”:[{“op”:”<”,”content”:{“field”:”sample.cell_number”,”value”:1000}},
{“op”:”is missing”,”content”:{“field”:”sample.tissue”}},
{“op”:”exclude”,”content”:{“field”:”subject.organism.id”,”value”:[“9606”,”10090”]}}
]}

2.3. AIRR Standards 99

airr-standards Documentation, Release 1.3

Note that the not operator is different from a logical NOT operator, and the logical NOT is not needed as the other
operators provide negation.

The field operand specifies a fully qualified property name in the AIRR Data Model. Fully qualified AIRR prop-
erties are either a JSON/YAML base type (string, number, integer, or boolean) or an array of one of these
base types (some AIRR fields are arrays e.g. study.keywords_study). The Fields section below describes the
available queryable fields.

The value operand specifies one or more values when evaluating the operator for the field operand.

Queries Against Arrays

A number of fields in the AIRR Data Model are arrays, such as study.keywords_study which is an array of
strings or subject.diagnosis which is an array of Diagnosis objects. A query operator on an array field will
apply that operator to each entry in the array to decide if the query filter is satisfied. The behavior is different for
various operators. For operators such as = and in, the filter behaves like the Boolean OR over the array entries, that is
if any array entry evaluates to true then the query filter is satisfied. For operators such as != and exclude, the filter
behaves like the Boolean AND over the array entries, that is all array entries must evaluate to true for the query filter
to be satisfied.

Examples

A simple query with a single operator looks like this:

{
"filters": {
"op":"=",
"content": {

"field":"junction_aa",
"value":"CASSYIKLN"

}
}

}

A more complex query with multiple operators looks like this:

{
"filters": {
"op":"and",
"content": [

{
"op":"!=",
"content": {
"field":"subject.organism.id",
"value":"9606"

}
},
{

"op":">=",
"content": {
"field":"sample.cells_per_reaction",
"value":"10000"

}
},
{

"op":"exclude",
"content": {
"field":"subject.organism.id",
"value": ["9606", "10090"]

(continues on next page)

100 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

(continued from previous page)

}
}

]
}

}

Format Query Parameter

Specifies the format of the API response. json is the default format and is available for all endpoints. The
rearrangement POST endpoint also accepts tsv which will provide the data in the AIRR TSV format. A spe-
cific ordering of fields in the TSV format should not be assumed from one API request to another. Take care to
properly merge AIRR TSV data from multiple API requests, e.g. such as with the airr-tools merge program.

Fields Query Parameter

The fields parameter specifies which fields are to be included in the API response. By default all fields (AIRR and
non-AIRR) stored in the data repository are returned. However, this can vary between data repositories based upon
how the repository decides to store blank or null fields, so the fields and/or include_fields parameter should
be used to guarantee the existence of data elements in the response.

Include Fields Query Parameter

The include_fields parameter specifies that the API response should include a well-defined set of AIRR Stan-
dard fields. These sets include:

• miairr, for only the MiAIRR fields.

• airr-core, for the AIRR required and identifier fields. This is expected to be the most common option as
it provides all MiAIRR fields, additional required fields useful for analysis, and all identifier fields for linking
objects in the AIRR Data Model.

• airr-schema, for all AIRR fields in the AIRR Schema.

The include_fields parameter is a mechanism to ensure that specific AIRR data elements are returned without
requiring those fields to be individually provided with the fields parameter. Any data elements that lack a value
will be assigned null in the response. Any empty array of objects, for example subject.diagnosis, will be
populated with a single object with all of the object’s properties given a null value. Any empty array of primitive
data types, like string or number, will be assigned null. Note that if both the include_fields and the fields
parameter are provided, the API response will include the set of AIRR fields and in addition will include any additional
fields that are specified in the fields parameter.

Size and From Query Parameters

The ADC API provides a pagination feature that limits the number of results returned by the API.

The from query parameter specifies which record to start from when returning results. This allows records to be
skipped. The default value is 0 indicating that the first record in the set of results will be returned.

The size query parameters specifies the maximum number of results to return. The default value is specific to the data
repository, and a maximum value may be imposed by the data repository. This is to prevent queries from “accidently”
returning millions of records. The info endpoint provides the data repository default and maximum values for the
repertoire and rearrangement endpoints, which may have different values. A value of 0 indicates there is no
limit on the number of results to return, but if the data repository does not support this then the default value will be
used.

The combination of from and size can be used to implement pagination in a graphical user interface, or to split a
very large download into smaller batches. For example, if an interface displays 10 records as a time, the request would
assign size=10 and from=0 to get the ten results to display on the first page. When the user traverses to the “next
page”, the request would assign from=10 to skip the first ten results and return the next ten results, and from=20
for the next page after that, and so on.

2.3. AIRR Standards 101

airr-standards Documentation, Release 1.3

Facets Query Parameter

The facets parameter provides aggregate count information for the specified field. Only a single field can be
specified. The facets parameter can be used in conjunction with the filters parameter to get aggregate counts for
a set of search results. It returns the set of values for the field, and the number of records (repertoires or rearrangement)
that have this value. For field values that have no counts, the API service can either return the field value with a 0 count
or exclude the field value in the aggregation. The typical use of this parameter is for displaying aggregate information
in a graphical user interface.

Here is a simple query with only the facets parameter to return the set of values for sample.pcr_target.
pcr_target_locus and the count of repertoires repertoires that have each value. The content of the JSON
payload.

{
"facets":"sample.pcr_target.pcr_target_locus"

}

Sending this query in an API request.

curl --data @facets1_repertoire.json https://vdjserver.org/airr/v1/repertoire

The output from the request is similar to normal queries except the data is provided with the Facet key.

{
"Info": {
"title": "AIRR Data Commons API reference implementation",
"description": "API response for repertoire query",
"version": 1.3,
"contact": {

"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
},
"Facet": [
{"sample.pcr_target.pcr_target_locus":[["TRB"]],"count":40},
{"sample.pcr_target.pcr_target_locus":[["IGH"]],"count":20}

]
}

Here is a query with both filters and facets parameters, which restricts the data records used for the facets
count. The content of the JSON payload.

{
"filters":{

"op":"=",
"content": {

"field":"sample.pcr_target.pcr_target_locus",
"value":"IGH"

}
},
"facets":"subject.subject_id"

}

Sending this query in an API request.

curl --data @facets2_repertoire.json https://vdjserver.org/airr/v1/repertoire

Example output from the request. This result indicates there are ten subjects each with two IGH repertoires.

102 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

{
"Info": {
"title": "AIRR Data Commons API reference implementation",
"description": "API response for repertoire query",
"version": 1.3,
"contact": {

"name": "AIRR Community",
"url": "https://github.com/airr-community"

}
},
"Facet": [
{"subject.subject_id":"TW05B","count":2},
{"subject.subject_id":"TW05A","count":2},
{"subject.subject_id":"TW03A","count":2},
{"subject.subject_id":"TW04A","count":2},
{"subject.subject_id":"TW01A","count":2},
{"subject.subject_id":"TW04B","count":2},
{"subject.subject_id":"TW02A","count":2},
{"subject.subject_id":"TW03B","count":2},
{"subject.subject_id":"TW01B","count":2},
{"subject.subject_id":"TW02B","count":2}

]
}

ADC API Limits and Thresholds

Repertoire endpoint query fields

It is expected that the number of repertoires in a data repository will never become so large such that queries become
computationally expensive. A data repository might have thousands of repertoires across hundreds of studies, yet
such numbers are easily handled by databases. Based upon this, the ADC API does not place limits on the repertoire
endpoint for the fields that can be queried or the operators that can be used.

Rearrangement endpoint query fields

Unlike repertoire data, data repositories are expected to store billions of rearrangement records, where performing
“simple” queries can quickly become computationally expensive. Data repositories are encouraged to optimize their
databases for performance. Therefore, based upon a set of query use cases provided by immunology experts, a minimal
set of required fields was defined that can be queried. These required fields are described in the following Table. The
fields also have the AIRR extension property adc-query-support: true in the AIRR Schema.

Field(s) Description
sequence_id, reper-
toire_id, sam-
ple_processing_id,
data_processing_id,
clone_id, cell_id

Identifiers; sequence_id allows for query of that specific rearrangement object in the
repository, while repertoire_id, sample_processing_id, and data_processing_id are links
to the repertoire metadata for the rearrangement. The clone_id and cell_id are identifiers
that group rearrangements based on clone assignment and single cell assignment.

locus, v_call, d_call,
j_call, c_call, produc-
tive, junction_aa, junc-
tion_aa_length

Commonly used rearrangement annotations.

Data repository specific limits

A data repository may impose limits on the size of the data returned. This might be because of limitations imposed
by the back-end database being used or because of the need to manage the load placed on the server. For example,

2.3. AIRR Standards 103

airr-standards Documentation, Release 1.3

MongoDB databases have document size limits (16 megabytes) which limit the size of a query that can be sent to a
repository and the size of a single repertoire or rearrangement object that is returned. As a result a repository might
choose to set a maximum query size.

Size limits can be retrieved from the info endpoint. If the data repository does not provide a limit, then no limit is
assumed.

Field Description
max_sizeThe maximum value for the size query parameter. Attempting to retrieve data beyond this maximum

should trigger an error response. The error response should include information about why the query
failed and what the maximum size limit is.

max_query_sizeThe maximum size of the JSON query object.

Reference Implementation

The AIRR Community provides a reference implementation for an ADC API service with more information found
here.

2.3.5 AIRR Ontologies and Vocabularies Team

Summary

The “Ontologies and Vocabularies Team” was formed as a joint interest group of the Common Repository (ComRepo)
and the Minimal Standards (MiniStd) working groups of the AIRR Community. The long-term aim of the Team is to
define standard vocabularies and ontologies to be used by AIRR-compliant databases.

Ontology Data Representation

The nodes in an ontology are typically either concepts (e.g., capital) or instances thereof (e.g., Paris). These nodes
have local IDs (often numbers), which are unique within an ontology. They also typically have labels, which is the
human-readable name of the node. Ontology entities in the AIRR Data Standard reflect this model, with each AIRR
field that is represented as an ontology recorded with a global ontology ID (id) and the corresponding label (label).

Within the AIRR Standards, Compact URIs (CURIEs) are used to represent ontology IDs. CURIEs are a standardized
way to abbreviate International Resource Identifiers (IRI, [RFC3987]), which includes URIs as a subset. They were
originally conceived to simplify the handling of attributes, e.g. in XML or SPARQL, by making them more compact
and readable. CURIEs are also used by IEDB databases to reduce redundancies (mainly in the leading part of IRIs).

For example, a typical CURIE would look like NCBITAXON:9258. In this case, NCBITAXON is the prefix, a custom
string that will be replaced by a repository-defined IRI component (e.g., http://purl.obolibrary.org/obo/
NCBITaxon_). Note that there is no connection between NCBITAXON in the CURIE and NCBITaxon in the IRI,
the former one is just a placeholder.

The AIRR schema will provide a list of AIRR approved CURIE prefixes along with a list of at least one IRI prefix (i.e.,
replacement string) for each them. This list serves two purposes:

1. It provides a controlled namespace for CURIE prefixes used in the AIRR schema. For now, custom additions to
or replacements of these prefixes in the schema are prohibited. This does not affect the ability of repositories to
use such custom prefixes internally.

2. It simplifies resolution of CURIEs by non-repositories. The lists of IRI prefixes for each CURIE prefix should
not be considered to be exhaustive. However, when using custom IRI prefixes, it must be ensured that they refer
to the same ontology as the provider prefixes.

104 Chapter 2. Table of Contents

https://www.w3.org/TR/curie

airr-standards Documentation, Release 1.3

It should be explicitly noted that the IRI prefix list should not be interpreted as any kind of recommendation for certain
providers. It is left up to users to decide how to resolve the resulting IRIs, e.g., via DNS/HTTP (if possible) or by
using a provider of their choice.

Approved Ontologies

• Cell ontology (CL)

– used in:

* Cell subset (cell_subset, Tissue and Cell Processing)

– CURIE summary

* CURIE Prefix: CL

* CURIE IRI Prefix: http://purl.obolibrary.org/obo/CL_

– example AIRR use

* “cell_subset.id” : “CL:0000542”

* “cell_subset.label” : “lymphocyte”

– default root node

* label: lymphocyte

* local id: CL_0000542

* path: ‘‘

– license: CC BY

– latest release (as of 2020-05-20): 2020-03-02

– repo: https://github.com/obophenotype/cell-ontology

– maintainer: Alexander Diehl, Buffalo, NY, US (addiehl@buffalo.edu)

• Human disease ontology (DOID)

– used in:

* Diagnosis (disease_diagnosis, Diagnosis)

– CURIE summary

* CURIE Prefix: DOID

* CURIE IRI Prefix: http://purl.obolibrary.org/obo/DOID_

– example AIRR use

* “disease_diagnosis.id” : “DOID:9538”

* “disease_diagnosis.label” : “multiple myeloma”

– default root node

* label: disease

* local ID: DOID:4

* path: disease

– license: CC0

– latest release (as of 2020-05-20): 2020-04-20

2.3. AIRR Standards 105

http://obofoundry.org/ontology/cl.html
https://creativecommons.org/licenses/by/4.0/
https://github.com/obophenotype/cell-ontology
mailto:addiehl@buffalo.edu
https://disease-ontology.org
https://creativecommons.org/publicdomain/zero/1.0/

airr-standards Documentation, Release 1.3

– repo: https://github.com/DiseaseOntology/HumanDiseaseOntology

– maintainer: Lynn Schriml, U Maryland, MD, US (lynn.schriml@gmail.com)

– notes: Features ICD cross-reference

• NCBI organismal taxonomy (NCBITAXON)

– used in:

* Species (species, Subject)

* Cell species (cell_species, Tissue and Cell Processing)

– CURIE summary

* CURIE Prefix: NCBITAXON

* CURIE IRI Prefixes: http://purl.obolibrary.org/obo/NCBITaxon_, http://
purl.bioontology.org/ontology/NCBITAXON/

– example AIRR use

* “species.id” : “NCBITAXON:9606”

* “species.label” : “Homo sapiens”

– default root node

* label: Gnathostomata

* local ID: 7776

* path: cellular organisms/Eukaryota/Opisthokonta/Metazoa/Eumetazoa/
Bilateria/Deuterostomia/Chordata/Craniata/Vertebrata/Gnathostomata

– license: UMLS

– latest release (as of 2020-05-20): 2020-04-18

– repo: https://github.com/obophenotype/ncbitaxon

– maintainer: NCBI (info@ncbi.nlm.nih.gov)

• NCI thesaurus (NCIT)

– used in:

* Study type (study_type, Study)

– CURIE summary

* CURIE Prefix: NCIT

* CURIE IRI Prefixes: http://purl.obolibrary.org/obo/NCIT_, http://ncicb.
nci.nih.gov/xml/owl/EVS/Thesaurus.owl#

– example AIRR use

* “study_type.id” : “NCIT:C15197”

* “study_type.label” : “Case-Control Study”

– default root node

* label: Study

* local ID: C63536

* path: Activity/Clinical or Research Activity/ Research Activity/Study

106 Chapter 2. Table of Contents

https://github.com/DiseaseOntology/HumanDiseaseOntology
mailto:lynn.schriml@gmail.com
https://www.ebi.ac.uk/ols/ontologies/NCBITAXON
https://github.com/obophenotype/ncbitaxon
mailto:info@ncbi.nlm.nih.gov
https://www.ebi.ac.uk/ols/ontologies/ncit

airr-standards Documentation, Release 1.3

– license: Public domain, credit of NCI is requested

– repo: https://github.com/NCI-Thesaurus/thesaurus-obo-edition

– latest release (as of 2020-05-20): 2020-05-04

– maintainer: NCI (ncicbiitappssupport@mail.nih.gov)

• Units of measurement ontology (UO)

– used in:

* Age unit (age_unit, Subject)

– CURIE summary

* CURIE Prefix: UO

* CURIE IRI Prefix: http://purl.obolibrary.org/obo/UO_

– example AIRR use

* “age_unit.id” : “UO:0000036”

* “age_unit.label” : “year”

– default root node

* label: time unit

* local ID: UO_0000003

* path: unit/time unit

– license: CC BY (per Github repo)

– repo: https://github.com/bio-ontology-research-group/unit-ontology

– latest release (as of 2020-05-20): 2020-05-18

– maintainer: unknown

• Uber-anatomy ontology (Uberon)

– used in:

* Tissue (tissue, Sample)

– CURIE summary

* CURIE Prefix: UBERON

* CURIE IRI Prefix: http://purl.obolibrary.org/obo/UBERON_

– example AIRR use

* “tissue.id” : “UBERON:0002371”

* “tissue.label” : “bone marrow”

– default root node

* label: multicellular anatomical structure

* local ID: UBERON:0010000

* path: /BFO_0000002/BFO_0000004/anatomical entity/material anatomical
entity/anatomical structure/multicellular anatomical structure

– license: CC BY

2.3. AIRR Standards 107

https://github.com/NCI-Thesaurus/thesaurus-obo-edition
mailto:ncicbiitappssupport@mail.nih.gov
https://www.ebi.ac.uk/ols/ontologies/UO
https://creativecommons.org/licenses/by/4.0/
https://github.com/bio-ontology-research-group/unit-ontology
https://www.ebi.ac.uk/ols/ontologies/UBERON
https://creativecommons.org/licenses/by/4.0/

airr-standards Documentation, Release 1.3

– repo: https://github.com/obophenotype/uberon

– latest release (as of 2020-05-20): 2019-11-22

– maintainer: Chris Mungall, LBL, CA, US (cjmungall@lbl.gov)

Sprint Reports

OntoVoc Report - Sprint 11/2018

Objectives

The objectives of this first sprint in November 2018 were to:

1. define criteria for suitable ontologies

2. identify ontologies for five fields/keywords of the MiAIRR data standard and

3. assess technical aspects of ontology integration into databases

General Considerations

The Team initially discussed an approach where only vocabularies (i.e. lists of terms) and not ontologies (i.e. many
terms connected by predicates) would have been defined. These vocabularies would have been derived from on-
tologies, but this process would not necessarily have been reversible. The notion at this time point was, that such an
approach would allow to solve a number of problems like combining multiple sources and removing duplicated leaves.
However, after some discussions this approach was effectively abandoned for a number of reasons:

• It would discard the UID for an entity. As the UID (in contrast to the name string) is guaranteed to be stable and
unique, it facilitates updates, linking and information representation, all of which would otherwise be lost.

• In general, it will be more sustainable to work with the maintainers of an existing ontology to include enti-
ties/terms, than just dumping their terms into a list and adding new ones.

• Well-designed ontologies will not contain duplicated entities, although they might appear to do so in a simple
browsers (i.e. this is an artifact of representation). Ontologies that actually do contain duplicates are excluded
by criterium 2.

Criteria for Ontologies

Criteria

Ontologies used within AIRR standards

1. MUST1 cover the majority of the required terms, but complete coverage is OPTIONAL

2. MUST have a structure that is scientifically correct and logically coherent

3. MUST NOT feature complexity that makes it hard to use for queries and data representation

4. SHOULD already be widely adopted

5. MUST be actively maintained

6. MUST be available under a free license
1 See the “Glossary” section on how to interpret term written in all-caps.

108 Chapter 2. Table of Contents

https://github.com/obophenotype/uberon
mailto:cjmungall@lbl.gov

airr-standards Documentation, Release 1.3

Comments on criteria:

• ad (1): For most fields it will be difficult to find complete and accurate ontologies. Therefore picking the
best available ontology and working with its maintainers to include missing terms is expected to be the most
sustainable approach.

• ad (5): This requirement follows from (1), as there needs to be a way for term requests.

• ad (6): A number of ontologies need to be licensed from their respective copyright holders. This results in
potential barriers for implementation and distribution of such ontologies. Therefore only ontologies available
under a free license are considered suitable for AIRR-compliant databases. The list of suitable licenses is not
final, but includes: CC0 and CC BY.

Selected Ontologies

(designations are MiAIRR field names and DataRep keywords)

Completed

• Species (organism)

– NCBITAXON

– license: UMLS2

– latest release: 2018-07-06

– maintainer: NCBI (info@ncbi.nlm.nih.gov)

• Diagnosis (disease_diagnosis)

– DOID

– root node

* name: disease

* ID: DOID:4

* path: /disease

– License: CC BY

– latest release: 2018-03-02

– maintainer: Lynn Schriml, U Maryland, MD, US (lynn.schriml@gmail.com)

– notes: Features ICD cross-reference

• Cell subset (cell_subset)

– CellOntology

– license: CC BY

– latest release: 2018-07-11

– maintainer: Alexander Diehl, Buffalo, NY, US (addiehl@buffalo.edu)

• Tissue (tissue)

– Uberon
2 Will require further review the UMLS Metathesaurus License is not a free license, however it needs to be clarified how much of it relates to

the work (i.e. the taxonomy itself) and how much to the service.

2.3. AIRR Standards 109

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/licenses/by/4.0/
https://bioportal.bioontology.org/ontologies/NCBITAXON
mailto:info@ncbi.nlm.nih.gov
https://bioportal.bioontology.org/ontologies/DOID
https://creativecommons.org/licenses/by/4.0/
mailto:lynn.schriml@gmail.com
https://bioportal.bioontology.org/ontologies/CL
https://creativecommons.org/licenses/by/4.0/
mailto:addiehl@buffalo.edu
https://bioportal.bioontology.org/ontologies/UBERON
https://uts.nlm.nih.gov/license.html

airr-standards Documentation, Release 1.3

– root node

* name: multicellular anatomical structure

* ID: UBERON:0010000

* path: /BFO_0000002/BFO_0000004/anatomical entity/material anatomical
entity/anatomical structure/multicellular anatomical structure

– License: CC BY

– latest release: 2018-10-15

– Maintainer: Chris Mungall, LBL, CA, US (cjmungall@lbl.gov)

Under evaluation

• Strain name (strain_name)

– Suggested ontologies:

* JAX

* IEDB

– Issues:

* Nomenclature

* one ontology is not enough

Technical aspects

• Repositories:

– UID assigned by ontologies are guaranteed to be unique and permanent3.

– A repository MAY use internal identifiers that are distinct from UIDs. However, to be AIRR-compliant it
MUST be able to map UIDs to its identifiers.

– Points of “AIRR compliance” would typically be:

* When data is extracted from the repository through a Query API (CRWG)

* When data is extracted from the repository into a file format (DataRep)

• Integration of ontologies into repositories:

– There are two main ontology providers offering a REST API and all the ontologies listed above:

* NCBO Bioportal

* OLS ontology

– NCBO can apparently be slow and sometimes not that stable, while OLS seems to be more stable and
potentially has a better long-term support.

– Remote ontology services tend to be slow and create external dependencies. On the other hand, while local
hosting of an ontology is possible (and partially supported by NCBO and OLS), it requires non-negligible
resources. The Team’s current assumption is that queries to remote ontology services can be substantially

3 This has more recently (early 2020) been called in question and will be revisited during the next sprint. Note that the uncertainty revolves
around the question what exactly constitues a UID, rather than the question whether a UID is permanent and unique.

110 Chapter 2. Table of Contents

https://creativecommons.org/licenses/by/4.0/
mailto:cjmungall@lbl.gov
https://bioportal.bioontology.org
https://www.ebi.ac.uk/ols/ontologies

airr-standards Documentation, Release 1.3

accelerated if only the relevant section of a respective ontology is queried. Therefore a local service would
not be necessary.

– Repositories should store both the IDs and the values in their database. This way, they do not have to
query the ontology in a scenario where human-readable output is required. In the case of changes, most
ontologies try to follow the practice of not changing a term value but instead create a new term with the
new value and a new ID, and deprecating the old term. Therefore term deprecation needs to be handled by
the repository.

– Like for the databases, also the API should be able to handle both IDs and values as query input and return
both during a query.

– The user interface (UI) should offer an ontology-backed autocomplete. NCBO provides some JavaScript
code to use. The UI must not offer deprecated terms. To allow entry of terms not present in the ontology,
data can be prefixed with some text that will allow the data validation to proceed (e.g., if an entry starts
with “other -” the UI will not autocomplete/validate). Later, i.e. when the term has been created, the data
will be updated.

• Note that the complete IEDB can be downloaded as SQL dump, it is licensed under CC BY. At a first glance, the
main overlap seems to be with organism, strain_name and to a smaller extent disease_diagnosis.
However, sample information like cell_subset and tissue seems to be largely absent from IEDB, so it
could currently not be the one-stop solution for AIRR.

Footnotes

Appendix

Glossary

• MUST / REQUIRED: Indicates that an element or action is necessary to conform to the standard.

• SHOULD / RECOMMENDED: Indicates that an element or action is considered to be best practice by AIRR,
but not necessary to conform to the standard.

• MAY / OPTIONAL: Indicates that it is at the discretion of the user to use an element or perform an action.

• MUST NOT / FORBIDDEN: Indicates that an element or action will be in conflict with the standard.

OntoVoc Report - Sprint 04/2020

Objectives

The objectives of this second sprint in April 2020 were to:

1. revisit general policies around ontologies used in the AIRR schema

2. identify two new ontologies for several fields of the AIRR schema

3. solve technical questions regarding IDs and providers

General Policies

The OntoVoc team revisited the criteria for ontologies used in the AIRR schema that it defined in the 11/2018 sprint.
While they are still considered to be valid, the team felt that a more detailed guidance could be useful in the process
of selecting ontologies for new fields. It therefore evaluated the OBO Foundry Principles, which partially re-iterate

2.3. AIRR Standards 111

https://www.iedb.org/database_export_v3.php
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/OBO_Foundry#Principles

airr-standards Documentation, Release 1.3

some of the existing criteria (e.g., Openness and Maintenance), but also provide additional recommendations, e.g., the
presence of textual definitions, clear scope and a common format, which were considered to be valuable additions to
the existing guidelines. The team therefore decided to endorse the OBO Foundry Principles, as RECOMMENDED
(but NOT REQUIRED) criteria. It should be noted, that this does not make any statement regarding the use of OBO
vs. non-OBO ontologies.

Decisions on Pending Items of Sprint 11/2018

A number of decisions on draft and legacy ontologies as well as root nodes was not officially passed during the last
sprint. The team thus revisited and confirmed the following decisions:

• Use of NCIT for study_type, top node Study (NCIT:C63536).

• Use of UO for age_unit, top node time unit (UO:0000003).

• Use of `Gnathostomata (NCBITAXON:7776) as top node for NCBITAXON when used for fields encoding
a host species.

• Use of lymphocyte (CL:0000542) as top node for CL when used for cell_subset.

New Ontologies

Mouse strain

Background

Mouse strain names follow a very elaborate nomenclature that is capable of describing the genetic background, breed-
ing history and introduced mutation in a detailed manner. However, this nomenclature is rarely used correctly (if at
all), which creates uncertainty about the identity of strains used in experimental studies. Therefore an ontology or
vocabulary compliant to this nomenclature would be of tremendous help for consistent annotation.

An ontology for the strain_name field was already on the list for the last sprint, however it was not possible to
identify a single ontology that would contain comprehensive information about strains from multiple species. This
situation created a problem that could not be resolved then. In the meantime, the concept of “extensions” has been
introduced to the AIRR schema, which create an additional layer of fields (and associated ontologies) on top of a core
schema. As these extensions can be made conditional on the value of fields within the core schema, it has now become
possible to have multiple extensions defining the strain_name field, but for different species and therefore with
distinct species-specific ontologies.

Having addressed this issue, the other key problem that remains is the absence of an actual ontology for mouse strains,
while a rat strain ontology exists. Therefore in a first step it is necessary to identify resources that you at least serve as
a provider for vocabularies. The two potential candidates that were identified are:

• MGI: The Mouse Genome Informatics database hosted at JAX aims to be comprehensive in regard to all mouse
strains that have been published in the literature.

• IEDB: The Immune Epitope Database already ran into the problem of a missing mouse ontology and therefore
decided to build up their own reference focused on immunologically relevant strains, as part of their Ontie
database.

Once it is clear which of the resources could be used, it will be necessary to approach the current maintainers regarding
their willingness to convert the data into an actual ontology (the RS could serve as a template for this). As this will
take longer than just a couple of weeks, the second step is out-of-scope for this sprint.

112 Chapter 2. Table of Contents

http://www.informatics.jax.org/mgihome/nomen/strains.shtml
https://www.ebi.ac.uk/ols/ontologies/rs

airr-standards Documentation, Release 1.3

Evaluation

• MGI: The database can be downloaded as a dump, however the licensing conditions are unclear. It contains a
total of 60k entries of which 3.2k inbred and 13.8k are congenic strains. The majority of the remaining entries
are coisogenic strains, most of them from large- scale gene KO projects.

• IEDB: Database dumps can also be downloaded and are freely available under CC-BY 4.0. It covers over a
thousand mouse strains and contains additional information on the genetic background of a strain.

Next steps

• Get in touch with JAX (pending)

Geolocation

There are several (planned) extensions to the AIRR metadata standard that will provide geospatial metadata. Country-
level information is typically assumed to be privacy-preserving and easy to operationalize. Therefore, while clearly
only capturing some aspects of genetic ancestry, it might serve as a proxy for concepts of “race” and “ethnicity” that
are rather ill-defined.

Potential candidate vocabularies/ontologies:

• ISO3166-1 alpha-2: Two-letter code, some ambiguity but well known from ccTLDs.

• ISO3166-1 alpha-3: Three-letter code, less ambiguity than alpha-2.

• UN Stats Division code (currently M49): Numerical code, not human-readable, maps to ISO3166-1 alpha-3.

• Gazetter (GAZ)

– Contains 2nd (state) and 3rd (county) level information.

– Not linked to any actual coordinates

– ISO3166-1 annotation is incomplete and lacks e.g. for Germany and Switzerland.

– Does not support German Umlauts. Äbsölütely inacceptable, as these are not just diacritical marks (i.e.
“Münster” and “Munster” are two different cities).

• HANCESTRO:

– Seems to be complete, but does not provide ISO3166 codes.

– Ontology could also be used for other fields relating to genetic ancestry.

– Links to DBpedia, currently unclear whether it is also populated from there

– country node has pan-240 leaves (surplus seems due to oversea territories), cross-referencing to GAZ (s/a)

• Various pathogen-related repositories:

– VectorBase (VBGEO): see link and choose “GADM/VBGEO PlaceNames”

– Viral Pathogen Resource (ViPR):

* Uses v1.3 of the GSCID/BRC Project and Sample Application Standard.

* GSCID/BRC Core Sample defines four fields for “Collection Location”:

· “Latitude” (CS11) and “Longitude” (CS12) in ISO 6709 format

· “Location” (CS13), using GAZ as controlled vocabulary

2.3. AIRR Standards 113

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://unstats.un.org/unsd/methodology/m49
https://www.ebi.ac.uk/ols/ontologies/gaz
https://www.ebi.ac.uk/ols/ontologies/hancestro
https://www.vectorbase.org/ontology-browser
https://www.viprbrc.org
https://www.niaid.nih.gov/research/human-pathogen-and-vector-sequencing-metadata-standards
https://github.com/GSCID-BRC-Metadata-Standard-WG/GSCID-BRC-Project-and-Sample-Application-Standard/blob/master/NIAID%20GSC%20BRC_Core%20Metadata%20Standard_v1.3_Core_Sample_final.docx
https://en.wikipedia.org/wiki/ISO_6709

airr-standards Documentation, Release 1.3

· “Country” (CS14) as by ISO3166-1 (alpha-2).

– Influenza Research Database (IRD): Flu-focused version of ViPR, also uses GSCID/BRC Project and
Sample Application Standard v1.3.

– Pathosystems Resource Integration Center (Patric): Focused on bacterial infectious diseases. Uses an
“Isolation Country” field in their “Genome” table, format seems to be full text.

Rejected candidates:

• HL7: own ontology deprecated, now recommends ISO 3166-1 alpha-3 set.

• NCIT: Incomplete, only contains pan-90 entities

• SNOMED: Licensing issues

• GADM data: Good quality and resolution, but not an ontology in itself. Also not under a free license, does not
allow redistribution or commercial use.

Evaluation

Given the number of options, there is no obvious candidate to pick. Therefore the team decided to define clear use
cases and then evaluate each options against them. However, due to time limitation, we did not really get into this, will
have to follow up in the next sprint. The use cases so far were:

• Annotate country of birth / of sampling [REQUIRED]

• Encode higher resolution than country level if legally permitted and scientifically meaningful [RECOM-
MENDED].

• Linking to geo-spatial coordinates [OPTIONAL]

Technical Questions

Background and Problem

Some nomenclature first: The nodes in an ontology graph are typically either concepts (e.g., capital) or instances
thereof (e.g., Paris). These nodes have local IDs (often numbers), which are unique within an ontology. They also
typically have labels, which is the human- readable name of the node. Nodes can have additional attributes (e.g.,
“population count”) and are connected to other nodes by relations (e.g. “is-a”, “superset-of”), which create the edges
of the graph.

The complete ontology is usually represented in an XML or OWL file. However, we are looking for a provider, i.e. a
service that facilitates queries of an ontology via web and/or an API-based interface. Upon querying with a unique ID,
is it expected that a provider will be able to return the record of a node, which should contain all attributes and relations.
Furthermore a provider might allow set- and graph-based queries (e.g., is A a complete subset of B; what is the last
common ancestor of A and B). Finally a provider can offer lookup services, i.e., identify the corresponding concept
or instance in another ontology. Until now we have mainly looked at three providers: Ontobee, OLS and BioPortal.
While they all provide similar basic services, it should be noted that some biomedical databases and repositories are,
by convention, restricted to use certain providers.

As stated above, each node has a local ID. To avoid conflicts between the local IDs of multiple ontologies, providers
and ontology collections (e.g., OBO Foundry) use a namespace, i.e., some abbreviation for the ontology that is prefixed
to the local ID. However, as there no common standard how to create these prefixes, this system is only unambiguous
and collision-safe within a single provider. To resolve this issue, ontologies often use International Resource Identifiers
(IRI, [RFC3987]). While IRIs look like HTTP URLs, they should primarily be considered as permanent and globally
unique identifiers, which might resolve to the node’s record via DNS/HTTP, but this is optional. In addition, potential
intermediate URLs generated in the DNS/HTTP resolving process must be considered internal and therefore should

114 Chapter 2. Table of Contents

https://www.fludb.org
https://patricbrc.org
http://www.ontobee.org/
https://www.ebi.ac.uk/ols/index
https://bioportal.bioontology.org
https://en.wikipedia.org/wiki/Namespace

airr-standards Documentation, Release 1.3

not be used by third parties. Finally, it needs be noted that IRIs should to be considered case-sensitive, especially when
used as identifiers (per [RFC3987], Section 5.3.2.1, which only excludes the schema and host (authority) component
for case-sensitivity).

While many ontologies already define an entities IRI on the level of the ontology, there are some that do not. For such
ontologies, IRIs are then assigned by the provider. The most notable example for this are the UMLS ontologies like
the NCBI Taxonomy. This leads to the situation that a single node in an ontology, stored by two providers can have
different IRIs. Therefore, a concept from NCBI Taxonomy, e.g., the duck-billed platypus (label: Ornithorhynchus
anatinus, local ID: 9258) has the IRI http://purl.obolibrary.org/obo/NCBITaxon_9258 in Ontobee
and the IRI http://purl.bioontology.org/ontology/NCBITAXON/9258 in BioPortal. In addition,
other providers might choose to use one of these IRIs too, although it will never resolve to their system via DNS/HTTP
(e.g., OLS uses the Ontobee IRIs).

For the AIRR Community, this creates the challenge that we want to be able to have unambiguous identifiers, without
requiring any specific provider.

Proposed solution

Compact URIs (CURIEs) are a standardized way to abbreviate IRIs, which includes URIs as a subset. They were
originally conceived to simplify the handling of attributes, e.g. in XML or SPARQL, by making them more compact
and readable. CURIEs are e.g. used by IEDB databases to reduce redundancies (mainly in the leading part of IRIs).

A typical CURIE would, e.g., look like NCBITAXON:9258. In this case, NCBITAXON is the prefix, a custom
string that will be replaced by a repository-defined IRI component (e.g., http://purl.obolibrary.org/obo/
NCBITaxon_). Note that there is no connection between NCBITAXON in the CURIE and NCBITaxon in the IRI,
the former one is just a placeholder.

This resolves the issue of different providers usings different IRIs with distinct formatting rules (as described above).
As the choice of the provider is independent for each ontology, it allows greater flexibility for the repositories, as they
do not need a single provider that needs be able to resolve all terms. Similarly, different repositories can use the same
ontology, but use different providers. Note that this would not require changes to the data, as the data would only
contains CURIEs, not the (provider-specific) IRIs.

The AIRR schema will provide a list of AIRR approved CURIE prefixes along with a list of at least one IRI prefix (i.e.,
replacement string) for each them. This list serves two purposes:

1. It provides a controlled namespace for CURIE prefixes used in the AIRR schema. For now, custom additions to
or replacements of these prefixes in the schema are prohibited. This does not affect the ability of repositories to
use such custom prefixes internally.

2. It simplifies resolution of CURIEs by non-repositories. The lists of IRI prefixes for each CURIE prefix should
not be considered to be exhaustive. However, when using custom IRI prefixes, it must be ensured that they refer
to the same ontology as the provider prefixes.

It should be explicitly noted that the IRI prefix list should not be interpreted as any kind of recommendation for certain
providers. It is left up to users to decide how to resolve the resulting IRIs, e.g., via DNS/HTTP (if possible) or by
using a provider of their choice.

Modifications to the AIRR schema

All changes to the AIRR schema that would be based on the sprint can currently be reviewed on Github in Pull Request
#385. These changes are intended to be included into the next major release.

2.3. AIRR Standards 115

https://www.w3.org/TR/curie
https://github.com/airr-community/airr-standards/pull/385

airr-standards Documentation, Release 1.3

Clarifications

• Root nodes are specific to individual fields, not to an ontology. Therefore, NCBITAXON will use a root node of
“Gnathostomata” for the annotations of the host species, but this would not be useful, e.g., if it would be used
to annotate pathogenic organisms, which will require a top node at the apex of the hierarchy.

• The labels (previous: values) that are provided in the schema for ontology-based fields, should be con-
sidered an addition for convenience and not as being authoritative. Repositories or applications can choose to
link synonyms to given concepts (e.g., “human” for “Homo sapiens”) to simply search queries. Repositories
further can provide such a synonym in the label field upon exporting data. However, repositories importing
data should verify the correctness of labels that do not match the one provided by the ontology. Importing
repositories must not be expected to allow for queries of labels other than those present in the ontology.

Annotation guidance

Note that this section is only a parking lot, the respective text will be moved into the AIRR Docs in the final version.

• Cells that come from Ficoll gradients should not be annotated as PBMCs as this is a sister node of lymphocyte.
For the other sampling related fields, in nearly all cases venous blood (UBERON:0013756) will be the correct
tissue and it should be used in the case of sample_type:peripheral venous puncture. However,
if the mode of sampling is not specified, blood (UBERON:0000178) should be used instead. Also see https:
//github.com/airr-community/airr-standards/issues/242

2.3.6 Schema Release Notes

Version 1.3.1: October 13, 2020

Version 1.3 documentation patch release.

Alignment Schema:

1. Added the deprecation tags for rearrangement_id, which were accidentally left out of the v1.3.0 release.

Version 1.3.0: May 28, 2020

Version 1.3 schema release.

New Schema:

1. Introduced the Repertoire Schema for describing study meta data.

2. Introduced the PCRTarget Schema for describing primer target locations.

3. Introduced the SampleProcessing Schema for describing experimental processing steps for a sample.

4. Replaced the SoftwareProcessing schema with the DataProcessing schema.

5. Introduced experimental schema for clonal clusters, lineage trees, tree nodes, and cells as Clone, Tree, Node,
and Cell objects, respectively.

General Updates:

1. Added multiple additional attributes to a large number of schema propertes as AIRR extension attributes in the
x-airr field. The new Attributes object contains definitions for these x-airr field attributes.

2. Added the top level required property to all relevant schema objects.

3. Added the title attribute containing the short, descriptive name to all relevant schema object fields.

116 Chapter 2. Table of Contents

https://github.com/airr-community/airr-standards/issues/242
https://github.com/airr-community/airr-standards/issues/242

airr-standards Documentation, Release 1.3

4. Added an example attribute containing an example data value to multiple schema object fields.

AIRR Data Commons API:

1. Added OpenAPI V2 specification (specs/adc-api.yaml) for AIRR Data Commons API major version 1.

Ontology Support:

1. Added Ontology and CURIEResolution objects to support ontologies.

2. Added vocabularies/ontologies as JSON string for: Cell subset, Target substrate, Library generation method,
Complete sequences, Physical linkage of different loci.

Rearrangement Schema:

1. Added the complete_vdj field to annotate whether a V(D)J alignment was full length.

2. Added the junction_length_aa field defining the length of the junction amino acid sequence.

3. Added the repertoire_id, sample_processing_id, and data_processing_id fields to serve as
linkers to the appropriate metadata objects.

4. Added a controlled vocabulary to the locus field: IGH, IGI, IGK, IGL, TRA, TRB, TRD, TRG.

5. Deprecated the rearrangement_set_id and germline_database fields.

6. Deprecated rearrangement_id field and made the sequence_id field be the primary unique identifer
for a rearrangement record, both in files and data repositories.

7. Added support secondary D gene rearrangement through the additional fields: d2_call,
d2_score, d2_identity, d2_support, d2_cigar np3, np3_aa, np3_length,
n3_length, p5d2_length, p3d2_length, d2_sequence_start, d2_sequence_end,
d2_germline_start, d2_germline_start, d2_alignment_start, d2_alignment_end,
d2_sequence_alignment, d2_sequence_alignment_aa, d2_germline_alignment,
d2_germline_alignment_aa.

8. Updated field definitions with more concise V(D)J call descriptions.

Alignment Schema:

1. Deprecated the rearrangement_set_id and germline_database fields.

2. Added the data_processing_id field.

Study Schema:

1. Added the study_type field containing an ontology defined term for the study design.

Subject Schema:

1. Deprecated the organism field in favor of the new species field.

2. Deprecated the age field.

3. Introduced age ranges: age_min, age_max, and age_unit.

Diagnosis Schema:

1. Changed the type of the disease_diagnosis field from string to Ontology.

Sample Schema:

1. Changed the type of the tissue field from string to Ontology.

CellProcessing Schema:

1. Changed the type of the cell_subset field from string to Ontology.

2. Introduced the cell_species field which denotes the species from which the analyzed cells originate.

2.3. AIRR Standards 117

airr-standards Documentation, Release 1.3

NucleicAcidProcessing Schema:

1. Defined the template_class field as type string.

2. Added a controlled vocabulary the library_generation_method field.

3. Changed the controlled vocabulary terms of complete_sequences. Replacing complete &
untemplated with complete+untemplated and adding mixed.

4. Added the pcr_target field referencing the new PCRTarget schema object.

SequencingRun Schema:

1. Added the sequencing_run_id field which serves as the object identifer field.

2. Added the sequencing_files field which links to the RawSequenceData schema objects defining the raw
read data.

RawSequenceData Schema:

1. Added the file_type field defining the sequence file type. This field is a controlled vocabulary restricted to:
fasta, fastq.

2. Added the paired_read_length field defining mate-pair read lengths.

3. Defined the read_direction and paired_read_direction fields as type string.

DataProcessing Schema:

1. Replaces the SoftwareProcessing object.

2. Added data_processing_id, primary_annotation, data_processing_files,
germline_database and analysis_provenance_id fields.

Version 1.2.1: Oct 5, 2018

Minor patch release.

1. Schema gene vs segment terminology corrections

2. Added Info object

3. Updated cell_subset URL in AIRR schema

Version 1.2.0: Aug 18, 2018

Peer reviewed released of the Rearrangement schema.

1. Definition change for the coordinate fields of the Rearrangement and Alignment schema. Coordinates are now
defined as 1-based closed intervals, instead of 0-based half-open intervals (as previously defined in v1.1 of the
schema).

2. Removed foreign study_id fields

3. Introduced keywords_study field

Version 1.1.0: May 3, 2018

Initial public released of the Rearrangement and Alignment schemas.

1. Added required and nullable constrains to AIRR schema.

2. Schema definitions for MiAIRR attributes and ontology.

118 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

3. Introduction of an x-airr object indicating if field is required by MiAIRR.

4. Rename rearrangement_set_id to data_processing_id.

5. Rename study_description to study_type.

6. Added physical_quantity format.

7. Raw sequencing files into separate schema object.

8. Rename Attributes object.

9. Added primary_annotation and repertoire_id.

10. Added diagnosis to repertoire object.

11. Added ontology for organism.

12. Added more detailed specification of sequencing_run, repertoire and rearrangement.

13. Added repertoire schema.

14. Rename definitions.yaml to airr-schema.yaml.

15. Removed c_call, c_score and c_cigar from required as this is not typical reference aligner output.

16. Renamed vdj_score, vdj_identity, vdj_evalue, and vdj_cigar to score, identity,
evalue, and cigar.

17. Added missing c_identity and c_evalue fields to Rearrangement spec.

18. Swapped order of N and S operators in CIGAR string.

19. Some description clean up for consistency in Rearrangement spec.

20. Remove repeated objects in definitions.yaml.

21. Added Alignment object to definitions.yaml.

22. Updated MiARR format consistency check TSV with junction change.

23. Changed definition from functional to productive.

Version 1.0.1: Jan 9, 2018

MiAIRR v1 official release and initial draft of Rearrangement and Alignment schemas.

2.4 Data Submission and Query

2.4.1 Data Submission Guides for AIRR-seq studies

There are multiple data repositories that accept submission of AIRR-seq datasets. Each provides different capabilities
but all comply with the MiAIRR standard.

CAIRR Pipeline

2.4. Data Submission and Query 119

airr-standards Documentation, Release 1.3

Introduction: The CAIRR pipeline for submitting standards-compliant B and T cell receptor reper-
toire sequencing studies to the NCBI

AIRR sequencing (AIRR-seq) has tremendous potential to understand the dynamics of the immune repertoire in vac-
cinology, infectious disease, autoimmunity, and cancer biology. The adaptation of high-throughput sequencing (HTS)
for AIRR (Adaptive Immune Receptor Repertoire) studies has made possible to characterize the AIRR at unprece-
dented depth and the outcome of such sequencing produces big data. Effective sharing of AIRR-seq big data could
potentially reveal amazing scientific insights. The AIRR Community has proposed MiAIRR (Minimum information
about an Adaptive Immune Receptor Repertoire Sequencing Experiment), a standard for reporting AIRR-seq studies.
The MiAIRR standard has been implemented using the National Center for Biotechnology Information (NCBI) repos-
itories. Submissions of AIRR-seq data to the NCBI repositories typically use a combination of web-based and flat-file
templates and include only a minimal amount of terminology validation. As a result, AIRR-seq studies at the NCBI
are often described using inconsistent terminologies, limiting scientists’ ability to access, find, interoperate, and reuse
the data sets and to understand how the experiments were performed. CEDAR (Center for Expanded Data Annotation
and Retrieval) develops technologies involving the use of data standards and ontologies to improve metadata quality.
In order to improve metadata quality and ease AIRR-seq study submission process, we have developed an AIRR-seq
data submission pipeline named CEDAR-AIRR (CAIRR). CAIRR leverages CEDAR’s technologies to: i) create web-
based templates whose entries are controlled by ontology terms, ii) generate and validate metadata and iii) submit
the ontology-linked metadata and sequence files (FASTQ) to the NCBI BioProject, BioSample, and Sequence Read
Archive (SRA) databases. Thus, CAIRR provides a web-based metadata submission interface that supports compli-
ance with MiAIRR standards. The interface enables ontology-based validation for several data elements, including:
organism, disease, cell type and subtype, and tissue. This pipeline will facilitate the NCBI submission process and
improve the metadata quality of AIRR-seq studies.

Submission Steps

The submission steps are described in the MiAIRR-to-NCBI Submission Manual: Option 1. Submission via the
CEDAR system (CAIRR submission pipeline). You will need a CEDAR system account; you can self-register at https:
//cedar.metadatacenter.org. You will also need the identifier of a BioProject already entered in the NCBI BioProject
database.

Citing the MiAIRR Pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L. Egyedi, Debra Debra Willrett,
John Graybeal, Mark A. Musen, Florian Rubelt, Kei H. Cheung, and Steven H. Kleinstein. The CAIRR pipeline
for submitting standards-compliant B and T cell receptor repertoire sequencing studies to the NCBI. Frontiers in
Immunology 9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877

Tell Us About It

Please let us know how it went! If you are willing, we would love to have your comments in a short survey, it should
just take 5 minutes or so.

We also welcome entry of issues and requests in our github repository issues, and emails can be sent to cedar-
users@lists.stanford.edu. Both of these resources are publicly visible.

Support or Contact

Having trouble with NCBI submission process through our pipeline? Please email to Syed Ahmad Chan Bukhari or
to Marcos Martínez-Romero and we will help you sort it out.

120 Chapter 2. Table of Contents

https://cedar.metadatacenter.org
https://cedar.metadatacenter.org
https://www.ncbi.nlm.nih.gov/pubmed/30166985
https://www.ncbi.nlm.nih.gov/pubmed/30166985
https://www.surveymonkey.com/r/your-metadata-experience
https://github.com/metadatacenter/cedar-project/issues
mailto:cedar-users@lists.stanford.edu
mailto:cedar-users@lists.stanford.edu
mailto:ahmad.chan@yale.edu
mailto:marcosmr@stanford.edu

airr-standards Documentation, Release 1.3

Introduction to VDJServer

VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provides access to a suite of
tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads,
V(D)J gene assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated
visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface
designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons
for public sharing of repertoire sequencing data, as well as private sharing of data between users.

• VDJServer website

• VDJServer Community Data Portal

• Email VDJServer for information about submission of your study data.

References

Introduction to iReceptor

iReceptor is a platform for storing, sharing, and exploring AIRR-seq data according to the AIRR Community stan-
dards.

• iReceptor Website (General information)

• iReceptor Gateway (AIRR Data Commons data query and federation)

• iReceptor Repositories (AIRR Data Commons repositories)

• iReceptor Turnkey GitHUb (Software)

• Email iReceptor (Contact).

References

2.4.2 Data Submission for Inferred Genes and Alleles

In 2017, The AIRR Community established the Inferred Allele Review Committee (IARC) to evaluate inferred alleles
for inclusion in relevant germline databases. IARC has worked, together with colleagues at IMGT and the US National
Institutes of Health, to establish a systematic submission and review process. OGRDB was created and designed to
support that process, and provide a real-time record of affirmed sequences.

OGRDB - reference database of inferred immune receptor genes

In recent years it has become possible to sequence immune receptor repertoires (immunoglobulins and T cell receptors)
at great depth. The accurate analysis of these repertoires requires a comprehensive understanding of the germline genes
that give rise to the repertoire through V(D)J gene recombination.

Even for well-studied species such as humans and mice, our knowledge of allelic variation is incomplete. Identifying
new immunoglobulin and T cell receptor polymorphisms from the genome using traditional methods is technically
challenging, because of the complex sequence architecture and repetitive nature of these loci. More recently, methods
have been developed to infer novel sequences and alleles from sequenced repertoires.

The Adaptive Immune Receptor Repertoire (AIRR) Community was formed to promote and share good practice in
adaptive immune repertoire sequencing. In 2017, it established the Inferred Allele Review Committee (IARC) to
evaluate inferred alleles for inclusion in relevant germline databases. IARC’s work is outlined in more detail in a
poster, which was presented at a Systems Immunology Workshop at the University of Surrey, England, in March

2.4. Data Submission and Query 121

https://vdjserver.org
https://vdjserver.org/community
mailto:vdjserver@utsouthwestern.edu?subject=Data%20submission%20to%20VDJServer
http://www.ireceptor.org
https://gateway.ireceptor.org
http://www.ireceptor.org/repositories
https://github.com/sfu-ireceptor/turnkey-service-php
mailto:support@ireceptor.org

airr-standards Documentation, Release 1.3

2018, and in a recent paper. IARC has worked, together with colleagues at IMGT and the US National Institute of
Health, to establish a systematic submission and review process. OGRDB was created and designed to support that
process, and provide a real-time record of affirmed sequences. Affirmed sequences will be listed under the Sequences
tab above, and the submissions that underpin them will be found under the Submissions tab. You can make your own
submissions by following the steps below.

How to submit your sequences

As a first step, IARC is now ready to review submissions of inferred human IGHV genes and alleles. These sequences
may be novel, or may extend incomplete sequences currently in the IMGT reference directories. Researchers interested
in submitting sequences should:

Submission of IARC gene inference data to NCBI

General outline

IARC submission currently follows a “INSDC first” approach, means that all sequence data related to the reported
inference is REQUIRED to be properly deposited in a general purpose sequence repository before it is reviewed
by IARC. The submitter needs to complete the initial steps of submission to one of the INSDC repositories. Upon
submission to IARC, some of this data will be pulled in from NCBI (TODO: What kind of data can we actually pull
down from INSDC?)

The aim of this procedure is to ensure that inferences reviewed by IARC are public and will remain available in the
long run. It is however explicitly not the aim to provide data that deterministically will yield the same inference results.

Deposition of inferred gene data at NCBI

At the end of the deposition process there should be three types of records present at NCBI:

1. A single record containing the final and full-length inferred sequence. The record is deposited in one of the
following:

• Genbank: All inferences that have been performed on the submitters own data CAN be submitted as
[???] to Genbank. Note that Genbank typically only holds data that has a physical correlate which is not
necessarily true for inferred sequences. Nevertheless NCBI currently accepts this as a kind of consensus
building if it is performed on your own data. The Genbank record MUST link to the select set
record (see 3.) via the DBLINK/DR field. Genbank records will be publicly available independent of other
publications. Note that the for Genbank, the DBLINK field does not appear to be available through the
BankIt submission interface. You can use Tbl2asn and Sequin, and edit the DBLINK field manually
(as “Sequence Read Archive” is not one of the options on the template creation page. A sample Genbank
deposit can be found under accession MK321694.

• TPA (Third-party annotation): A segment of Genbank dedicated inferences. Also the TPA record MUST
link to the select set record (see 3.) via the DBLINK/DR field. Note that in contrast to Genbank,
TPA does REQUIRE a peer-reviewed publication describing the details of the inference process before the
record will be made publicly available. A sample TPA deposit can be found under accession BK01573.

The format for both record types the Genbank format (link) with a standardized feature table (FT). Note that
your initial submission MUST NOT contain any potential name for the gene as this will be assigned by IARC
later on.

TODO: Is there any metadata that should be provided into the GB record?

122 Chapter 2. Table of Contents

https://www.ncbi.nlm.nih.gov/WebSub/?tool=genbank
https://submit.ncbi.nlm.nih.gov/genbank/template/submission/
https://www.ncbi.nlm.nih.gov/nuccore/MK321694
https://www.ncbi.nlm.nih.gov/nuccore/BK010573

airr-standards Documentation, Release 1.3

2. One or multiple SRA records containing all raw reads of the the respective sequencing run. Note that if you are
performing inference using third-party data, these records MUST be submitted by the original owner of the data.
These record type will typically be present before the other. The metadata annotation of the records SHOULD
be MiAIRR compliant [Rubelt et al.].

3. One or multiple SRA records containing the select set of reads from (2). The aim of these records is to
document the number, quality, coverage and diversity of the reads in a dataset that _potentially_ support the
inference. This means that the select set SHOULD be a superset of the reads that support the inference.
It is NOT REQUIRED that inference tools deterministically return the inferred allele upon being fed with the
select set. Generation of the select set from the complete set is described below. When submitting
the select set to SRA the metadata context, i.e. the original links to project, sample and (if possible) exper-
iment) SHOULD be maintained. Reads originating from multiple subjects or samples MUST NOT be pooled
into a single new entry. The new record SHOULD be titled “Reads from <original_run_accession> supporting
inference of Homo sapiens immunoglobulin heavy chain variable gene” and contain a design description, e.g.,
“Experimental workflow as described in original SRA/ENA record [<run_accession>]. Gene inference was per-
formed using <software+version+parameters>. The reported reads were selected based on <selection_criteria>.”

NOTE: It is reasonably likely, in the short term, that you will encounter questions from the SRA/ENA/Genbank staff
about the nature of these deposits. If so, you can respond that they are made as part of a community effort to document
novel alleles with an emphasis on transparency in data provenance. You can link to the IARC page and note that we
worked together with IMGT and Genbank/TPA staff in designing this procedure.

Generating the select set

Below is the current procedure describing how to generate a select set using general purpose tools. This pro-
cedure was designed in a rather generic fashion so that it is easy to implement and does NOT REQUIRE inference
tools to provide their own mechanisms. Note that it is currently assumed that the procedure is not fully deterministic,
i.e. the select set cannot simply be generated using the complete read data and the inferred sequence, as there
are additional filter criteria that apply. In addition the select set SHOULD not be subject to any modifications
that are not listed below. This includes UMI-based consensus building or other aggregation steps that are not fully
transparent to a third-party.

1. Assemble paired-end reads. The two reads MUST overlap. Recommended tool: PandaSeq

2. Perform PHRED filtering that is equivalent to the one performed by inference pipeline. Recommended tool:
Immcantation suite

3. Perform a blastn search using the data from (2.) as query and bp 1-312 of the inferred gene as reference library.
Require matches to be full-length and >99.6% ID. Record all matching read ID. Recommended tool: NCBI
BLAST

4. Select the reads with the read ID found in (3.) from the original unmerged FASTQs. Note that each select
set MUST be derived from a single donor and sample. Recommended tool: Christian’s cryptic extractor script

5. Submit the select set to SRA

Submit the inferred sequences to IARC via OGRDB, following the

• OGRDB Submission Guide

Additional information is available at the

• OGRDB Website

2.4. Data Submission and Query 123

https://www.antibodysociety.org/inferred-allele-review-committee-iarc/
https://ogrdb.airr-community.org/render_page/ogre_guide.html
https://ogrdb.airr-community.org

airr-standards Documentation, Release 1.3

References

2.4.3 Data Query and Download from the AIRR Data Commons

Submission of AIRR-seq datasets to public data repositories means that other researchers can query, download and
reuse that data for novel analyses.

AIRR Data Commons

The AIRR Data Commons is a network of distributed repositories that store AIRR-seq data and adhere to the AIRR
Community standards. We define the AIRR Data Commons as consisting of the set of repositories that both:

• Adhere to the AIRR Common Repositories Working Group recommendations for promoting, sharing, and use
of AIRR-seq data.

• Implement the ADC API as a programmatic mechanism to access that data.

More information on repositories in the AIRR Data Commons and how to query these repositories can be found on
the AIRR Data Commons page:

AIRR Data Commons

The use of high-throughput sequencing for profiling B-cell and T-cell receptors has resulted in a rapid increase in data
generation. It is timely, therefore, for the Adaptive Immune Receptor Repertoire (AIRR) community to establish a clear
set of community-accepted data and metadata standards; analytical tools; and policies and practices for infrastructure
to support data deposit, curation, storage, and use. Such actions are in accordance with international funder and journal
policies that promote data deposition and data sharing – at a minimum, data on which scientific publications are based
should be made available immediately on publication. Data deposit in publicly accessible databases ensures that
published results may be validated. Such deposition also facilitates reuse of data for the generation of new hypotheses
and new knowledge.

The AIRR Common Repository Working Group (CRWG) has developed a set of recommendations that promote the
deposit, sharing, and use of AIRR sequence data. These recommendations were refined following community discus-
sions at the AIRR 2016 and 2017 Community Meetings and were approved through a vote by the AIRR Community at
the AIRR Community Meeting in December 2017. Updates to these recommendations have continued, with the latest
set of Recommendations ratified at the AIRR Community meeting in May 2019.

In May 2020, the AIRR Community released the first verion of the AIRR Data Commons Application Programming
Interface (ADC API), a specification for programmatic access to query and download AIRR-seq data from repositories
that adhere to the AIRR Standards. We define the AIRR Data Commons as consisting of the set of repositories that:

• adhere to the CRWG recommendations for promoting, sharing, and use of AIRR-seq data, and

• that implement the ADC API as a programmatic mechanism to access that data.

This page provides a central location for the community to discover resources that belong to the AIRR Data Commons.

AIRR Data Commons Repositories

These data repositories all implement the AIRR Data Commons (ADC) API programmatic access to query and down-
load AIRR-seq data.

• iReceptor Public Archive

• VDJServer Community Data Portal

124 Chapter 2. Table of Contents

https://github.com/airr-community/common-repo-wg/blob/master/recommendations.md
https://github.com/airr-community/common-repo-wg/blob/master/recommendations.md

airr-standards Documentation, Release 1.3

Querying the AIRR Data Commons

Each of the repositories above can be queried directly using the ADC API. In addition, the following tools and plat-
forms implement web based user interfaces that use the ADC API to query repositories in the AIRR Data Commons:

• iReceptor Gateway

There are query and analysis use cases and a set of example queries available for the AIRR Data Commons and the
ADC API.

Other Public AIRR-Seq Repositories

There are additional data repositories that provide access to AIRR-seq data but which did not implement the ADC API
for programmatic access. Information about some of these repositories are provided in a B-T.CR forum post.

Germline Gene Inference and Usage

• OGRDB provides a list of alleles affirmed by the AIRR Community’s Inferred Allele Review Committee, to-
gether with supporting information.

• VDJbase provides gene usage information derived from a growing base of AIRR-seq repertoires, including
inferred genotypes and haplotypes.

2.5 Software

2.5.1 AIRR Standards Reference Implementations

AIRR Python Reference Library

The airr reference library provides basic functions and classes for interacting with AIRR Community Data Repre-
sentation Standards, including tools for read, write and validation.

API Reference

Rearrangement Interface

airr.read_rearrangement(filename, validate=False, debug=False)
Open an iterator to read an AIRR rearrangements file

Parameters

• file (str) – path to the input file.

• validate (bool) – whether to validate data as it is read, raising a ValidationError excep-
tion in the event of an error.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns iterable reader class.

Return type airr.io.RearrangementReader

airr.create_rearrangement(filename, fields=None, debug=False)
Create an empty AIRR rearrangements file writer

2.5. Software 125

https://b-t.cr/t/publicly-available-airr-seq-data-repositories/610
https://www.vdjbase.org

airr-standards Documentation, Release 1.3

Parameters

• filename (str) – output file path.

• fields (list) – additional non-required fields to add to the output.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns open writer class.

Return type airr.io.RearrangementWriter

airr.derive_rearrangement(out_filename, in_filename, fields=None, debug=False)
Create an empty AIRR rearrangements file with fields derived from an existing file

Parameters

• out_filename (str) – output file path.

• in_filename (str) – existing file to derive fields from.

• fields (list) – additional non-required fields to add to the output.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns open writer class.

Return type airr.io.RearrangementWriter

airr.load_rearrangement(filename, validate=False, debug=False)
Load the contents of an AIRR rearrangements file into a data frame

Parameters

• filename (str) – input file path.

• validate (bool) – whether to validate data as it is read, raising a ValidationError excep-
tion in the event of an error.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns Rearrangement records as rows of a data frame.

Return type pandas.DataFrame

airr.dump_rearrangement(dataframe, filename, debug=False)
Write the contents of a data frame to an AIRR rearrangements file

Parameters

• dataframe (pandas.DataFrame) – data frame of rearrangement data.

• filename (str) – output file path.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if the file is written without error.

Return type bool

airr.merge_rearrangement(out_filename, in_filenames, drop=False, debug=False)
Merge one or more AIRR rearrangements files

Parameters

• out_filename (str) – output file path.

• in_filenames (list) – list of input files to merge.

126 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

• drop (bool) – drop flag. If True then drop fields that do not exist in all input files, other-
wise combine fields from all input files.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if files were successfully merged, otherwise False.

Return type bool

airr.validate_rearrangement(filename, debug=False)
Validates an AIRR rearrangements file

Parameters

• filename (str) – path of the file to validate.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if files passed validation, otherwise False.

Return type bool

Repertoire Interface

airr.load_repertoire(filename, validate=False, debug=False)
Load an AIRR repertoire metadata file

Parameters

• filename (str) – path to the input file.

• validate (bool) – whether to validate data as it is read, raising a ValidationError excep-
tion in the event of an error.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns list of Repertoire dictionaries.

Return type list

airr.write_repertoire(filename, repertoires, info=None, debug=False)
Write an AIRR repertoire metadata file

Parameters

• file (str) – path to the output file.

• repertoires (list) – array of repertoire objects.

• info (object) – info object to write. Will write current AIRR Schema info if not speci-
fied.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if the file is written without error.

Return type bool

airr.validate_repertoire(filename, debug=False)
Validates an AIRR repertoire metadata file

Parameters

• filename (str) – path of the file to validate.

• debug (bool) – debug flag. If True print debugging information to standard error.

2.5. Software 127

airr-standards Documentation, Release 1.3

Returns True if files passed validation, otherwise False.

Return type bool

airr.repertoire_template()
Return a blank repertoire object from the template. This object has the complete structure with all of the fields
and all values set to None or empty string.

Returns empty repertoire object.

Return type object

Classes

class airr.io.RearrangementReader(handle, base=1, validate=False, debug=False)
Iterator for reading Rearrangement objects in TSV format

fields
field names in the input Rearrangement file.

Type list

external_fields
list of fields in the input file that are not part of the Rearrangement definition.

Type list

__init__(handle, base=1, validate=False, debug=False)
Initialization

Parameters

• handle (file) – file handle of the open Rearrangement file.

• base (int) – one of 0 or 1 specifying the coordinate schema in the input file. If 1, then
the file is assumed to contain 1-based closed intervals that will be converted to python
style 0-based half-open intervals for known fields. If 0, then values will be unchanged.

• validate (bool) – perform validation. If True then basic validation will be performed
will reading the data. A ValidationError exception will be raised if an error is found.

• debug (bool) – debug state. If True prints debug information.

Returns reader object.

Return type airr.io.RearrangementReader

__iter__()
Iterator initializer

Returns airr.io.RearrangementReader

__next__()
Next method

Returns parsed Rearrangement data.

Return type dict

close()
Closes the Rearrangement file

next()
Next method

128 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

class airr.io.RearrangementWriter(handle, fields=None, base=1, debug=False)
Writer class for Rearrangement objects in TSV format

fields
field names in the output Rearrangement file.

Type list

external_fields
list of fields in the output file that are not part of the Rearrangement definition.

Type list

__init__(handle, fields=None, base=1, debug=False)
Initialization

Parameters

• handle (file) – file handle of the open Rearrangements file.

• fields (list) – list of non-required fields to add. May include fields undefined by the
schema.

• base (int) – one of 0 or 1 specifying the coordinate schema in the output file. Data
provided to the write is assumed to be in python style 0-based half-open intervals. If 1,
then data will be converted to 1-based closed intervals for known fields before writing. If
0, then values will be unchanged.

• debug (bool) – debug state. If True prints debug information.

Returns writer object.

Return type airr.io.RearrangementWriter

close()
Closes the Rearrangement file

write(row)
Write a row to the Rearrangement file

Parameters row (dict) – row to write.

class airr.schema.Schema(definition)
AIRR schema definitions

properties
field definitions.

Type collections.OrderedDict

info
schema info.

Type collections.OrderedDict

required
list of mandatory fields.

Type list

optional
list of non-required fields.

Type list

2.5. Software 129

airr-standards Documentation, Release 1.3

false_values
accepted string values for False.

Type list

true_values
accepted values for True.

Type list

from_bool(value, validate=False)
Converts a boolean to a string

Parameters

• value (bool) – logical value.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of True or False or ‘T’ or ‘F’.

Return type str

Raises airr.ValidationError – raised if value is invalid when validate is set True.

spec(field)
Get the properties for a field

Parameters name (str) – field name.

Returns definition for the field.

Return type collections.OrderedDict

to_bool(value, validate=False)
Convert a string to a boolean

Parameters

• value (str) – logical value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to True or False.

Return type bool

Raises airr.ValidationError – raised if value is invalid when validate is set True.

to_float(value, validate=False)
Converts a string to a float

Parameters

• value (str) – float value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to a float.

Return type float

Raises airr.ValidationError – raised if value is invalid when validate is set True.

130 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

to_int(value, validate=False)
Converts a string to an integer

Parameters

• value (str) – integer value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to an integer.

Return type int

Raises airr.ValidationError – raised if value is invalid when validate is set True.

type(field)
Get the type for a field

Parameters name (str) – field name.

Returns the type definition for the field

Return type str

validate_header(header)
Validate header against the schema

Parameters header (list) – list of header fields.

Returns True if a ValidationError exception is not raised.

Return type bool

Raises airr.ValidationError – raised if header fails validation.

validate_object(obj, missing=True, nonairr=True, context=None)
Validate Repertoire object data against schema

Parameters

• obj (dict) – dictionary containing a single repertoire object.

• missing (bool) – provides warnings for missing optional fields.

• (bool (nonairr) – provides warning for non-AIRR fields that cannot be validated.

• context (string) – used by recursion to indicate place in object hierarchy

Returns True if a ValidationError exception is not raised.

Return type bool

Raises airr.ValidationError – raised if object fails validation.

validate_row(row)
Validate Rearrangements row data against schema

Parameters row (dict) – dictionary containing a single record.

Returns True if a ValidationError exception is not raised.

Return type bool

Raises airr.ValidationError – raised if row fails validation.

2.5. Software 131

airr-standards Documentation, Release 1.3

Schema

airr.schema.AlignmentSchema Schema object for the Alignment definition
AIRR schema definitions

airr.schema.properties
field definitions.

Type collections.OrderedDict

airr.schema.info
schema info.

Type collections.OrderedDict

airr.schema.required
list of mandatory fields.

Type list

airr.schema.optional
list of non-required fields.

Type list

airr.schema.false_values
accepted string values for False.

Type list

airr.schema.true_values
accepted values for True.

Type list

airr.schema.RearrangementSchema Schema object for the Rearrangement definition
AIRR schema definitions

airr.schema.properties
field definitions.

Type collections.OrderedDict

airr.schema.info
schema info.

Type collections.OrderedDict

airr.schema.required
list of mandatory fields.

Type list

airr.schema.optional
list of non-required fields.

Type list

airr.schema.false_values
accepted string values for False.

Type list

airr.schema.true_values
accepted values for True.

132 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Type list

airr.schema.RepertoireSchema Schema object for the Repertoire definition
AIRR schema definitions

airr.schema.properties
field definitions.

Type collections.OrderedDict

airr.schema.info
schema info.

Type collections.OrderedDict

airr.schema.required
list of mandatory fields.

Type list

airr.schema.optional
list of non-required fields.

Type list

airr.schema.false_values
accepted string values for False.

Type list

airr.schema.true_values
accepted values for True.

Type list

Commandline Tools

airr-tools

AIRR Community Standards utility commands.

usage: airr-tools [-h] [--version] ...

-h, --help
show this help message and exit

--version
show program’s version number and exit

airr-tools merge

Merge AIRR rearrangement files.

usage: airr-tools merge [--version] [-h] -o OUT_FILE [--drop] -a AIRR_FILES
[AIRR_FILES ...]

--version
show program’s version number and exit

2.5. Software 133

airr-standards Documentation, Release 1.3

-h, --help
show this help message and exit

-o <out_file>
Output file name.

--drop
If specified, drop fields that do not exist in all input files. Otherwise, include all columns in all files and fill
missing data with empty strings.

-a <airr_files>
A list of AIRR rearrangement files.

airr-tools validate

Validate AIRR files.

usage: airr-tools validate [--version] [-h] ...

--version
show program’s version number and exit

-h, --help
show this help message and exit

airr-tools validate rearrangement

Validate AIRR rearrangement files.

usage: airr-tools validate rearrangement [--version] [-h] -a AIRR_FILES
[AIRR_FILES ...]

--version
show program’s version number and exit

-h, --help
show this help message and exit

-a <airr_files>
A list of AIRR rearrangement files.

airr-tools validate repertoire

Validate AIRR repertoire metadata files.

usage: airr-tools validate repertoire [--version] [-h] -a AIRR_FILES
[AIRR_FILES ...]

--version
show program’s version number and exit

-h, --help
show this help message and exit

-a <airr_files>
A list of AIRR repertoire metadata files.

134 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Python Library Release Notes

Version 1.3.1: October 13, 2020

1. Refactored merge_rearrangement to allow for larger number of files.

2. Improved error handling in format validation operations.

Version 1.3.0: May 30, 2020

1. Updated schema set to v1.3.

2. Added load_repertoire, write_repertoire, and validate_repertoire to airr.
interface to read, write and validate Repertoire metadata, respectively.

3. Added repertoire_template to airr.interface which will return a complete repertoire object
where all fields have null values.

4. Added validate_object to airr.schema that will validate a single repertoire object against the schema.

5. Extended the airr-tools commandline program to validate both rearrangement and repertoire files.

Version 1.2.1: October 5, 2018

1. Fixed a bug in the python reference library causing start coordinate values to be empty in some cases when
writing data.

Version 1.2.0: August 17, 2018

1. Updated schema set to v1.2.

2. Several improvements to the validate_rearrangement function.

3. Changed behavior of all airr.interface functions to accept a file path (string) to a single Rearrangement TSV,
instead of requiring a file handle as input.

4. Added base argument to RearrangementReader and RearrangementWriter to support optional
conversion of 1-based closed intervals in the TSV to python-style 0-based half-open intervals. Defaults to
conversion.

5. Added the custom exception ValidationError for handling validation checks.

6. Added the validate argument to RearrangementReader which will raise a ValidationError ex-
ception when reading files with missing required fields or invalid values for known field types.

7. Added validate argument to all type conversion methods in Schema, which will now raise a
ValidationError exception for value that cannot be converted when set to True. When set False (de-
fault), the previous behavior of assigning None as the converted value is retained.

8. Added validate_header and validate_row methods to Schema and removed validations methods
from RearrangementReader.

9. Removed automatic closure of file handle upon reaching the iterator end in RearrangementReader.

2.5. Software 135

airr-standards Documentation, Release 1.3

Version 1.1.0: May 1, 2018

Initial release.

Installation

Install in the usual manner from PyPI:

> pip3 install airr --user

Or from the downloaded source code directory:

> python3 setup.py install --user

Quick Start

Reading AIRR Repertoire metadata files

The airr package contains functions to read and write AIRR repertoire metadata files. The file format is either
YAML or JSON, and the package provides a light wrapper over the standard parsers. The file needs a json, yaml,
or yml file extension so that the proper parser is utilized. All of the repertoires are loaded into memory at once and no
streaming interface is provided:

import airr

Load the repertoires
data = airr.load_repertoire('input.airr.json')
for rep in data['Repertoire']:

print(rep)

Why are the repertoires in a list versus in a dictionary keyed by the repertoire_id? There are two primary
reasons for this. First, the repertoire_id might not have been assigned yet. Some systems might allow MiAIRR
metadata to be entered but the repertoire_id is assigned to that data later by another process. Without the
repertoire_id, the data could not be stored in a dictionary. Secondly, the list allows the repertoire data to have a
default ordering. If you know that the repertoires all have a unique repertoire_id then you can quickly create a
dictionary object using a comprehension:

rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] }

Writing AIRR Repertoire metadata files

Writing AIRR repertoire metadata is also a light wrapper over standard YAML or JSON parsers. The airr library
provides a function to create a blank repertoire object in the appropriate format with all of the required fields. As with
the load function, the complete list of repertoires are written at once, there is no streaming interface:

import airr

Create some blank repertoire objects in a list
reps = []
for i in range(5):

reps.append(airr.repertoire_template())

(continues on next page)

136 Chapter 2. Table of Contents

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 1.3

(continued from previous page)

Write the repertoires
airr.write_repertoire('output.airr.json', reps)

Reading AIRR Rearrangement TSV files

The airr package contains functions to read and write AIRR rearrangement files as either iterables or pandas data
frames. The usage is straightforward, as the file format is a typical tab delimited file, but the package performs some
additional validation and type conversion beyond using a standard CSV reader:

import airr

Create an iteratable that returns a dictionary for each row
reader = airr.read_rearrangement('input.tsv')
for row in reader: print(row)

Load the entire file into a pandas data frame
df = airr.load_rearrangement('input.tsv')

Writing AIRR formatted files

Similar to the read operations, write functions are provided for either creating a writer class to perform row-wise
output or writing the entire contents of a pandas data frame to a file. Again, usage is straightforward with the airr
output functions simply performing some type conversion and field ordering operations:

import airr

Create a writer class for iterative row output
writer = airr.create_rearrangement('output.tsv')
for row in reader: writer.write(row)

Write an entire pandas data frame to a file
airr.dump_rearrangement(df, 'file.tsv')

By default, create_rearrangement will only write the required fields in the output file. Additional fields
can be included in the output file by providing the fields parameter with an array of additional field names:

Specify additional fields in the output
fields = ['new_calc', 'another_field']
writer = airr.create_rearrangement('output.tsv', fields=fields)

A common operation is to read an AIRR rearrangement file, and then write an AIRR rearrangement file with additional
fields in it while keeping all of the existing fields from the original file. The derive_rearrangement function
provides this capability:

import airr

Read rearrangement data and write new file with additional fields
reader = airr.read_rearrangement('input.tsv')
fields = ['new_calc']
writer = airr.derive_rearrangement('output.tsv', 'input.tsv', fields=fields)
for row in reader:

(continues on next page)

2.5. Software 137

airr-standards Documentation, Release 1.3

(continued from previous page)

row['new_calc'] = 'a value'
writer.write(row)

Validating AIRR data files

The airr package can validate repertoire and rearrangement data files to insure that they contain all required fields
and that the fields types match the AIRR Schema. This can be done using the airr-tools command line program
or the validate functions in the library can be called:

Validate a rearrangement file
airr-tools validate rearrangement -a input.tsv

Validate a repertoire metadata file
airr-tools validate repertoire -a input.airr.json

Combining Repertoire metadata and Rearrangement files

The airr package does not keep track of which repertoire metadata files are associated with rearrangement files, so
users will need to handle those associations themselves. However, in the data, the repertoire_id field forms the
link. The typical usage is that a program is going to perform some computation on the rearrangements, and it needs
access to the repertoire metadata as part of the computation logic. This example code shows the basic framework for
doing that, in this case doing gender specific computation:

import airr

Load the repertoires
data = airr.load_repertoire('input.airr.json')

Put repertoires in dictionary keyed by repertoire_id
rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] }

Create an iteratable for rearrangement data
reader = airr.read_rearrangement('input.tsv')
for row in reader:

get repertoire metadata with this rearrangement
rep = rep_dict[row['repertoire_id']]

check the gender
if rep['subject']['sex'] == 'male':

do male specific computation
elif rep['subject']['sex'] == 'female':

do female specific computation
else:

do other specific computation

AIRR Data Representation Reference Library

airr is an R package for working with data formatted according to the AIRR Data Representation schemas. It
includes the full set of schema definitions along with simple functions for read, write and validation.

138 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

Usage Vignette

Introduction

Since the use of High-throughput sequencing (HTS) was first introduced to analyze immunoglobulin (B-cell receptor,
antibody) and T-cell receptor repertoires (Freeman et al, 2009; Robins et al, 2009; Weinstein et al, 2009), the increasing
number of studies making use of this technique has produced enormous amounts of data and there exists a pressing
need to develop and adopt common standards, protocols, and policies for generating and sharing data sets. The
Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address this challenge (Breden et al,
2017) and has stablished the set of minimal metadata elements (MiAIRR) required for describing published AIRR
datasets (Rubelt et al, 2017) as well as file formats to represent this data in a machine-readable form. The airr R
package provide read, write and validation of data following the AIRR Data Representation schemas. This vignette
provides a set of simple use examples.

AIRR Data Representation Standards

The AIRR Community’s recommendations for a minimal set of metadata that should be used to describe an AIRR-seq
data set when published or deposited in a AIRR-compliant public repository are described in Rubelt et al, 2017. The
primary aim of this effort is to make published AIRR datasets FAIR (findable, accessible, interoperable, reusable); with
sufficient detail such that a person skilled in the art of AIRR sequencing and data analysis will be able to reproduce
the experiment and data analyses that were performed.

Following this principles, V(D)J reference alignment annotations are saved in standard tab-delimited files (TSV) with
associated metadata provided in accompanying YAML formatted files. The column names and field names in these
files have been defined by the AIRR Data Representation Working Group using a controlled vocabulary of standardized
terms and types to refer to each piece of information.

Reading AIRR formatted files

The airr package contains the function read_rearrangement to read and validate files containing AIRR Rear-
rangement records, where a Rearrangement record describes the collection of optimal annotations on a single sequence
that has undergone V(D)J reference alignment. The usage is straightforward, as the file format is a typical tabulated
file. The argument that needs attention is base, with possible values "0" and "1". base denotes the starting index
for positional fields in the input file. Positional fields are those that contain alignment coordinates and names ending
in “_start” and “_end”. If the input file is using 1-based closed intervals (R style), as defined by the standard, then
positional fields will not be modified under the default setting of base="1". If the input file is using 0-based coordi-
nates with half-open intervals (python style), then positional fields may be converted to 1-based closed intervals using
the argument base="0".

library(airr)

example_data <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")
basename(example_data)

[1] "rearrangement-example.tsv.gz"

airr_rearrangement <- read_rearrangement(example_data)
class(airr_rearrangement)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

2.5. Software 139

http://airr-community.org

airr-standards Documentation, Release 1.3

head(airr_rearrangement)

A tibble: 6 x 33
sequence_id sequence rev_comp productive vj_in_frame stop_codon v_call d_call j_
→˓call c_call sequence_alignm... germline_alignm... junction junction_aa v_cigar d_
→˓cigar
<chr> <chr> <lgl> <lgl> <lgl> <lgl> <chr> <chr>
→˓<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV2...
→˓IGHD5... IGHJ4... IGHG CAGATCACCTTGAAG... TGTGCAC...
→˓CAHSAGWLPD... 20S56N... 274S5N...
2 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV5...
→˓IGHD3... IGHJ6... IGHG GAGGTGCAGCTGGTG... TGTGCGA...
→˓CARHGLYGCD... 20S40N... 305S29...
3 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
→˓IGHD3... IGHJ4... IGHG CAGGTGCAGCTGGTG... TGTGCGA...
→˓CAREERRSSG... 20S33N... 293S13...
4 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
→˓IGHD3... IGHJ6... IGHG CAGGTGCAGCTGGTG... TGTGCGA...
→˓CAREGYYFDT... 20S33N... 290S9N...
5 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
→˓IGHD1... IGHJ6... IGHG CAGGTGCAGCTGGTG... TGTGCGA...
→˓CARDSGGMDVW 20S33N... 283S4N...
6 SRR765688.... NNNNNNN... FALSE FALSE TRUE TRUE IGHV2...
→˓IGHD2... IGHJ4... IGHA CAGATCACCTTGAAG... TGTGTCC...
→˓CVLSRRLGDS... 20S56N... 273S12...
... with 17 more variables: j_cigar <chr>, v_sequence_start <int>, v_sequence_
→˓end <int>, v_germline_start <int>, v_germline_end <int>, d_sequence_start <int>,
d_sequence_end <int>, d_germline_start <int>, d_germline_end <int>, j_sequence_
→˓start <int>, j_sequence_end <int>, j_germline_start <int>, j_germline_end <int>,
junction_length <int>, np1_length <int>, np2_length <int>, duplicate_count
→˓<int>

Writing AIRR formatted files

The airr package contains the function write_rearrangement to write Rearrangement records to the AIRR
TSV format.

out_file <- file.path(tempdir(), "airr_out.tsv")
write_rearrangement(airr_rearrangement, out_file)

References

1. Breden, F., E. T. Luning Prak, B. Peters, F. Rubelt, C. A. Schramm, C. E. Busse, J. A. Vander Heiden, et al. 2017.
Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front Immunol 8: 1418.

2. Freeman, J. D., R. L. Warren, J. R. Webb, B. H. Nelson, and R. A. Holt. 2009. Profiling the T-cell receptor
beta-chain repertoire by massively parallel sequencing. Genome Res 19 (10): 1817-24.

3. Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle, O. Kahsai, S. R. Riddell, E. H. Warren,
and C. S. Carlson. 2009. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells.
Blood 114 (19): 4099-4107.

4. Rubelt, F., C. E. Busse, S. A. C. Bukhari, J. P. Burckert, E. Mariotti-Ferrandiz, L. G. Cowell, C. T. Watson, et
al. 2017. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire

140 Chapter 2. Table of Contents

airr-standards Documentation, Release 1.3

sequencing data. Nat Immunol 18 (12): 1274-8.

5. Weinstein, J. A., N. Jiang, R. A. White, D. S. Fisher, and S. R. Quake. 2009. High-throughput sequencing of
the zebrafish antibody repertoire. Science 324 (5928): 807-10.

Reference Topics

read_airr

Read an AIRR TSV

Description

read_airr reads a TSV containing AIRR records.

Usage

read_airr(file, base = c("1", "0"), schema = RearrangementSchema, ...)

read_rearrangement(file, base = c("1", "0"), ...)

read_alignment(file, base = c("1", "0"), ...)

Arguments

file input file path.

base starting index for positional fields in the input file. If "1", then these fields will not be modified. If "0", then
fields ending in "_start" and "_end" are 0-based half-open intervals (python style) in the input file and will
be converted to 1-based closed-intervals (R style).

schema Schema object defining the output format.

. . . additional arguments to pass to read_delim.

Value

A data.frame of the TSV file with appropriate type and position conversion for fields defined in the specification.

Details

read_rearrangement reads an AIRR TSV containing Rearrangement data.

read_alignment reads an AIRR TSV containing Alignment data.

2.5. Software 141

http://www.rdocumentation.org/packages/readr/topics/read_delim

airr-standards Documentation, Release 1.3

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

See also

See Schema for the AIRR schema object definition. See write_airr for writing AIRR data.

write_airr

Write an AIRR TSV

Description

write_airr writes a TSV containing AIRR formatted records.

Usage

write_airr(data, file, base = c("1", "0"), schema = RearrangementSchema, ...)

write_rearrangement(data, file, base = c("1", "0"), ...)

write_alignment(data, file, base = c("1", "0"), ...)

Arguments

data data.frame of Rearrangement data.

file output file name.

base starting index for positional fields in the output file. Fields in the input data are assumed to be 1-based closed-
intervals (R style). If "1", then these fields will not be modified. If "0", then fields ending in _start and
_end will be converted to 0-based half-open intervals (python style) in the output file.

schema Schema object defining the output format.

. . . additional arguments to pass to write_delim.

Details

write_rearrangement writes a data.frame containing AIRR Rearrangement data to TSV.

write_alignment writes a data.frame containing AIRR Alignment data to TSV.

142 Chapter 2. Table of Contents

Schema-class.html
write_airr.html
http://www.rdocumentation.org/packages/readr/topics/write_delim

airr-standards Documentation, Release 1.3

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

Write a Rearrangement data file
outfile <- file.path(tempdir(), "output.tsv")
write_rearrangement(df, outfile)

See also

See Schema for the AIRR schema object definition. See read_airr for reading to AIRR files.

validate_airr

Validate AIRR data

Description

validate_airr validates compliance of the contents of a data.frame to the AIRR data standards.

Usage

validate_airr(data, schema = RearrangementSchema)

Arguments

data data.frame to validate.

schema Schema object defining the data standard.

Value

Returns TRUE if the input data is compliant and FALSE if not.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

(continues on next page)

2.5. Software 143

Schema-class.html
read_airr.html

airr-standards Documentation, Release 1.3

(continued from previous page)

Validate a data.frame against the Rearrangement schema
validate_airr(df, schema=RearrangementSchema)

[1] TRUE

load_schema

Load a schema definition

Description

load_schema loads an AIRR object definition from the internal definition set.

Usage

load_schema(definition)

Arguments

definition name of the schema definition.

Value

A Schema object for the definition.

Details

Valid definitions include:

• "Rearrangement"

• "Alignment"

• "Study"

• "Subject"

• "Diagnosis"

• "Sample"

• "CellProcessing"

• "NucleicAcidProcessing"

• "RawSequenceData"

• "SoftwareProcessing"

144 Chapter 2. Table of Contents

Schema-class.html

airr-standards Documentation, Release 1.3

Examples

Load the Rearrangement definition
schema <- load_schema("Rearrangement")

Load the Alignment definition
schema <- load_schema("Alignment")

See also

See Schema for the return object.

Schema-class

S4 class defining an AIRR standard schema

Description

Schema defines a common data structure for AIRR Data Representation standards.

Usage

"names"(x)

"["(x, i)

"$"(x, name)

AlignmentSchema

RearrangementSchema

Arguments

x Schema object.

i field name.

name field name.

Format

A Schema object.

An object of class Schema of length 1.

An object of class Schema of length 1.

2.5. Software 145

Schema-class.html

airr-standards Documentation, Release 1.3

Details

The following predefined Schema objects are defined:

AlignmentSchema: AIRR Alignment Schema.

RearrangementSchema: AIRR Rearrangement Schema.

Slots

required character vector of required fields.

optional character vector of non-required fields.

properties list of field definitions.

info list schema information.

See also

See load_schema for loading a Schema from the definition set. See read_airr, write_airr and validate_airr schema
operators.

ExampleData

Example AIRR data

Description

Example data files compliant with the the AIRR Data Representation standards.

Format

extdata/rearrangement-example.tsv.gz: Rearrangement TSV file.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

R Library Release Notes

Version 1.3.0: May 26, 2020

1. Updated schema set to v1.3.

146 Chapter 2. Table of Contents

load_schema.html
read_airr.html
write_airr.html
validate_airr.html

airr-standards Documentation, Release 1.3

2. Added info slot to Schema object containing general schema information.

Version 1.2.0: August 17, 2018

1. Updated schema set to v1.2.

2. Changed defaults to base="1" for read and write functions.

3. Updated example TSV file with coordinate changes, addition of germline_alignment data and simplifica-
tion of sequence_id values.

Version 1.1.0: May 1, 2018

Initial release.

Download & Installation

To install the latest release from CRAN:

install.packages("airr")

To build from the source code, first install the build dependencies:

install.packages(c("devtools", "roxygen2"))

To install the latest development code via devtools:

library(devtools)
install_github("airr-community/airr-standards/lang/R@master")

Note, using install_github will not build the documentation. To generate the documentation, clone the reposi-
tory, and then build as normal using the following R commands from the package root lang/R:

library(devtools)
install_deps(dependencies=T)
document()
install()

Dependencies

Imports: methods, readr, stats, stringi, yaml
Suggests: knitr, rmarkdown, testthat

Authors

Jason Vander Heiden (aut, cre)
Susanna Marquez (aut)
Scott Christley (aut)
AIRR Community (cph)

2.5. Software 147

https://github.com/airr-community/airr-standards
mailto:jason.vanderheiden@gmail.com
mailto:susanna.marquez@yale.edu
mailto:Scott.Christley@UTSouthwestern.edu

airr-standards Documentation, Release 1.3

License

CC BY 4.0

ADC API Reference Implementation

The AIRR Community provides a reference implementation for an ADC API service. The reference implementation
can be utilized for any number of tasks. For example, a data repository might use the source code as a starting point
for their own implementation and can compare the behaviour of their service against the reference. Another example
is a tool developer, who wishes to use the API, can setup a local data repository so they can develop and test their
tool before sending API requests across the internet to remote data repositories. While the reference implementation
is functionally complete, it has minimal security and no optimizations for large data so it should not be used directly
for production systems.

The reference implementation consists of three GitHub repositories: adc-api, adc-api-js-mongodb, and adc-api-
mongodb-repository. The three repositories correspond to the top-level service composition (adc-api), a JavaScript
web service that responds to API requests and queries a MongoDB database (adc-api-js-mongodb), and a MongoDB
database for holding AIRR-seq data (adc-api-mongodb-repository). Docker and docker-compose are used to provide
a consistent deployment environment and compose the multiple components together into a single service. Complete
documentation for configuring and deploying the reference implementation is available in the adc-api repository.

2.5.2 Resources and Tools Supporting AIRR Standards

Applications Supporting the Rearrangement Schema

The following list of software tools and databases support the TSV format of v1.2 of the AIRR Rearrangement schema.

148 Chapter 2. Table of Contents

https://github.com/airr-community/adc-api
https://github.com/airr-community/adc-api-js-mongodb
https://github.com/airr-community/adc-api-mongodb-repository
https://github.com/airr-community/adc-api-mongodb-repository

airr-standards Documentation, Release 1.3

Software Version Support Reference
AIRR Python Li-
brary

1.2 Input, output and validation Vander Heiden et al. Front Im-
munol, 2018.

AIRR R Library 1.2 Input, output and validation Vander Heiden et al. Front Im-
munol, 2018.

Alakazam 1.0.1 Input and output Gupta & Vander Heiden et al.
Bioinformatics, 2015.

Cell Ranger 4.0 Output 10x Genomics, Inc. Pleasanton,
CA USA.

Change-O 0.4.2 Input, output and conversion Gupta & Vander Heiden et al.
Bioinformatics, 2015.

Decombinator 4.0.1 Output Oakes et al. Front Immunol,
2017.

IMGT/HighV-
QUEST

1.7.0 Output Alamyar et al. Methods Mol
Biol, 2012.

IMGT/V-QUEST 3.5.16 Output Giudicelli et al. Cold Spring
Harb Protoc, 2011.

IgBLAST 1.11 Output Ye et al. Nucleic Acids Res,
2013.

immunarch 0.6.5 Input ImmunoMind Team. 2019
ImmuneDB 0.24.0 Output Rosenfeld et al. Front Immunol,

2018.
immuneSIM 0.8.7 Output Weber et al. Bioinformatics,

2020.
iReceptor 3.0 Input and output Corrie et al. Immunol Rev,

2018.
MiXCR 3.0.14 Output Bolotin et al. Nat Methods,

2015.
RAbHIT 0.1.5 Input and output Gidoni et al. Nat Commun,

2019.
scirpy 0.3 Input Sturm et al. Bioinformatics,

2020.
SCOPer 1.0.1 Input and output Nouri & Kleinstein. Bioinfor-

matics, 2018.
SHazaM 1.0.0 Input and output Gupta & Vander Heiden et al.

Bioinformatics, 2015.
SONAR 3 Output Schramm et al. Front Immunol,

2016.
sumrep 1.0 Input Olson et al. Front Immunol,

2019.
TIgGER 1.0.0 Input and output Gadala-Maria et al. PNAS,

2015.
TRIgS 2 Input Lees & Shepherd. J Immunol

Res, 2015.
VDJServer 1.2.0 Input and output Christley et al. Front Immunol,

2018
Vidjil-algo 2018.1 Output Giraud et al. BMC Genomics,

2014.
Vidjil Web Platform TBD Input and conversion Duez et al. PLoS ONE, 2016.
IGoR TBD Input and output Marcou et al. Nat Commun,

2018.
OLGA TBD Input and output Sethna et al. Bioinformatics,

2019.
Partis TBD Output Ralph & Matsen. PLoS Comput

Biol, 2016.2.5. Software 149

https://pypi.org/project/airr
https://pypi.org/project/airr
https://doi.org/10.3389/fimmu.2018.02206
https://doi.org/10.3389/fimmu.2018.02206
https://cran.r-project.org/web/packages/airr
https://doi.org/10.3389/fimmu.2018.02206
https://doi.org/10.3389/fimmu.2018.02206
https://alakazam.readthedocs.io
https://doi.org/10.1093/bioinformatics/btv359
https://doi.org/10.1093/bioinformatics/btv359
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://www.10xgenomics.com
https://www.10xgenomics.com
https://changeo.readthedocs.io
https://doi.org/10.1093/bioinformatics/btv359
https://doi.org/10.1093/bioinformatics/btv359
https://github.com/innate2adaptive/Decombinator
https://doi.org/10.3389/fimmu.2017.01267
https://doi.org/10.3389/fimmu.2017.01267
http://www.imgt.org/IMGT_vquest/input
http://www.imgt.org/IMGT_vquest/input
https://doi.org/10.1007/978-1-61779-842-9_32
https://doi.org/10.1007/978-1-61779-842-9_32
http://www.imgt.org/IMGT_vquest/input
https://doi.org/10.1101/pdb.prot5633
https://doi.org/10.1101/pdb.prot5633
https://www.ncbi.nlm.nih.gov/igblast
https://doi.org/10.1093/nar/gkt382
https://doi.org/10.1093/nar/gkt382
https://github.com/immunomind/immunarch
http://doi.org/10.5281/zenodo.3367200
http://immunedb.com
https://doi.org/10.3389/fimmu.2018.02107
https://doi.org/10.3389/fimmu.2018.02107
https://immuneSIM.readthedocs.io
https://doi.org/10.1093/bioinformatics/btaa158
https://doi.org/10.1093/bioinformatics/btaa158
http://www.ireceptor.org
https://doi.org/10.1111/imr.12666
https://doi.org/10.1111/imr.12666
https://milaboratory.com/software/mixcr
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/nmeth.3364
https://yaarilab.bitbucket.io/RAbHIT
https://doi.org/10.1038/s41467-019-08489-3
https://doi.org/10.1038/s41467-019-08489-3
https://icbi-lab.github.io/scirpy
https://doi.org/10.1093/bioinformatics/btaa611
https://doi.org/10.1093/bioinformatics/btaa611
https://scoper.readthedocs.io
https://doi.org/10.1093/bioinformatics/bty235
https://doi.org/10.1093/bioinformatics/bty235
https://shazam.readthedocs.io
https://doi.org/10.1093/bioinformatics/btv359
https://doi.org/10.1093/bioinformatics/btv359
https://github.com/scharch/SONAR
https://doi.org/doi:10.3389/fimmu.2016.00372
https://doi.org/doi:10.3389/fimmu.2016.00372
https://github.com/matsengrp/sumrep
https://doi.org/10.3389/fimmu.2019.02533
https://doi.org/10.3389/fimmu.2019.02533
https://tigger.readthedocs.io
https://doi.org/10.1073/pnas.1417683112
https://doi.org/10.1073/pnas.1417683112
https://github.com/williamdlees/TRIgS
https://doi.org/10.1155/2015/323506
https://doi.org/10.1155/2015/323506
https://vdjserver.org
https://doi.org/10.3389/fimmu.2018.00976
https://doi.org/10.3389/fimmu.2018.00976
http://www.vidjil.org
https://doi.org/10.1186/1471-2164-15-409
https://doi.org/10.1186/1471-2164-15-409
http://www.vidjil.org
https://doi.org/10.1371/journal.pone.0166126
https://github.com/qmarcou/IGoR
https://doi.org/10.1038/s41467-018-02832-w
https://doi.org/10.1038/s41467-018-02832-w
https://github.com/zsethna/OLGA
https://doi.org/10.1093/bioinformatics/btz035
https://doi.org/10.1093/bioinformatics/btz035
https://github.com/psathyrella/partis
https://doi.org/10.1371/journal.pcbi.1004409
https://doi.org/10.1371/journal.pcbi.1004409

airr-standards Documentation, Release 1.3

AIRR Data Commons Repositories

These data repositories all implement the AIRR Data Commons (ADC) API programmatic access to query and down-
load AIRR-seq data.

• iReceptor Public Archive

• VDJServer Community Data Portal

2.6 Community Resources

2.6.1 Resources and Tools Supporting AIRR Standards

2.6.2 Useful Websites for the AIRR Community

• The Antibody Society

• The AIRR Community of the Antibody Society

• B-T.CR Forum

• The AIRR Community GitHub

• The AIRR Standards GitHub Repository

• The AIRR Community Docker Hub

2.7 Appendix A: Key Terms

The following table provides definitions for terms and acronyms relevant to this documentation.

Term Definition
ADC AIRR Data Commons
AIRR Adaptive Immune Receptor Repertoire
AIRR-C AIRR Community
API Application Programming Interface
CAIRR CEDAR AIRR
CEDAR Center for Expanded Data Annotation and Retrieval
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
MiAIRR Minimal Information about an Adaptive Immune Receptor Repertoire study
REST Representational State Transfer
TSV Tab Separated Values
URL Universal Resource Locator
YAML YAML Ain’t Markup Language

2.8 References

150 Chapter 2. Table of Contents

https://www.antibodysociety.org/
https://www.antibodysociety.org/the-airr-community
https://b-t.cr
https://github.com/airr-community
https://github.com/airr-community/airr-standards
https://hub.docker.com/u/airrc

Bibliography

[LIGMDB_V12] IMGT-ONTOLOGY definitions. <http://www.imgt.org/ligmdb/label#JUNCTION>

[INSDC_FT] The DDBJ/ENA/GenBank Feature Table Definition. <http://www.insdc.org/documents/feature-table>

[ENA_MANUAL] European Nucleotide Archive Annotated/Assembled Sequences User Manual. <http://ftp.ebi.ac.
uk/pub/databases/ena/sequence/release/doc/usrman.txt>

[GENBANK_FF] GenBank Flat File Format. <https://ftp.ncbi.nih.gov/genbank/gbrel.txt>

[GENBANK_SR] GenBank Sample Record. <https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html>

[INSDC_XREF] Controlled vocabulary for /db_xref qualifier. <http://www.insdc.org/documents/
dbxref-qualifier-vocabulary>

[NCBI_NBK47528] SRA Handbook. <https://www.ncbi.nlm.nih.gov/books/NBK47528/>

[RFC3987] Internationalized Resource Identifiers (IRIs). DOI:10.17487/RFC3987

[RFC3987] Internationalized Resource Identifiers (IRIs). ‘DOI:10.17487/RFC3987‘_

[Christley_2018] Christley S et al. VDJServer: A Cloud-Based Analysis Portal and Data Commons
for Immune Repertoire Sequences and Rearrangements. Front Immunol 9:976 (2018) DOI:
10.3389/fimmu.2018.00976

[Corrie_2018] Corrie et al. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell re-
ceptor repertoire data across federated repositories. Immunol Rev. 2018 Jul;284(1):24-41. DOI:
10.1111/imr.12666

[Ohlin_2019] Ohlin M et al. Inferred Allelic Variants of Immunoglobulin Receptor Genes: A System for Their Eval-
uation, Documentation, and Naming. Front Immunol 10:435 (2019) DOI: 10.3389/fimmu.2019.00435

[Breden_2017] Breden F et al. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front
Immunol 8:1418 (2017). DOI: 10.3389/fimmu.2017.01418

[Christley_2020] Christley S et al. The ADC API: a web API for the programmatic query of the AIRR Data Commons.
Front in Big Data (2020). DOI: 10.3389/fdata.2020.00022

[RFC2119] Key words for use in RFCs to Indicate Requirement Levels DOI: 10.17487/RFC2119

[Rubelt_2017] Rubelt F et al. AIRR Community Recommendations for Sharing Immune Repertoire Sequencing Data.
Nat Immunol 18:1274 (2017). DOI: 10.1038/ni.3873

151

http://www.imgt.org/ligmdb/label#JUNCTION
http://www.insdc.org/documents/feature-table
http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt
http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt
https://ftp.ncbi.nih.gov/genbank/gbrel.txt
https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.insdc.org/documents/dbxref-qualifier-vocabulary
http://www.insdc.org/documents/dbxref-qualifier-vocabulary
https://www.ncbi.nlm.nih.gov/books/NBK47528/
https://doi.org/10.17487/RFC3987
https://doi.org/10.3389/fimmu.2018.00976
https://doi.org/10.3389/fimmu.2018.00976
https://doi.org/10.1111/imr.12666
https://doi.org/10.1111/imr.12666
https://doi.org/10.3389/fimmu.2019.00435
https://doi.org/10.3389/fimmu.2017.01418
https://doi.org/10.3389/fdata.2020.00022
https://doi.org/10.17487/RFC2119
https://doi.org/10.1038/ni.3873

airr-standards Documentation, Release 1.3

[VanderHeiden_2018] Vander Heiden JA et al. AIRR Community Standardized Representations for Annotated Im-
mune Repertoires. Front Immunol 9:2206 (2018). DOI: 10.3389/fimmu.2018.02206

[Wilkinson_2016] Wilkinson MD et al. The FAIR Guiding Principles for scientific data management and stewardship.
Sci Data 3:160018 (2016). DOI: 10.1038/sdata.2016.18

[Zenodo_1185414] Release archive of the AIRR Standards repository. (2015-2020). DOI: 10.5281/zenodo.1185414

152 Bibliography

https://doi.org/10.3389/fimmu.2018.02206
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/zenodo.1185414

Index

Symbols
-drop

airr-tools-merge command line
option, 134

-version
airr-tools command line option, 133
airr-tools-merge command line

option, 133
airr-tools-validate command line

option, 134
airr-tools-validate-rearrangement

command line option, 134
airr-tools-validate-repertoire

command line option, 134
-a <airr_files>

airr-tools-merge command line
option, 134

airr-tools-validate-rearrangement
command line option, 134

airr-tools-validate-repertoire
command line option, 134

-h, -help
airr-tools command line option, 133
airr-tools-merge command line

option, 133
airr-tools-validate command line

option, 134
airr-tools-validate-rearrangement

command line option, 134
airr-tools-validate-repertoire

command line option, 134
-o <out_file>

airr-tools-merge command line
option, 134

__init__() (airr.io.RearrangementReader method),
128

__init__() (airr.io.RearrangementWriter method),
129

__iter__() (airr.io.RearrangementReader method),

128
__next__() (airr.io.RearrangementReader method),

128

A
airr-tools command line option

-version, 133
-h, -help, 133

airr-tools-merge command line option
-drop, 134
-version, 133
-a <airr_files>, 134
-h, -help, 133
-o <out_file>, 134

airr-tools-validate command line
option

-version, 134
-h, -help, 134

airr-tools-validate-rearrangement
command line option

-version, 134
-a <airr_files>, 134
-h, -help, 134

airr-tools-validate-repertoire command
line option

-version, 134
-a <airr_files>, 134
-h, -help, 134

AlignmentSchema (in module airr.schema), 132

C
close() (airr.io.RearrangementReader method), 128
close() (airr.io.RearrangementWriter method), 129
create_rearrangement() (in module airr), 125

D
derive_rearrangement() (in module airr), 126
dump_rearrangement() (in module airr), 126

153

airr-standards Documentation, Release 1.3

E
external_fields (airr.io.RearrangementReader at-

tribute), 128
external_fields (airr.io.RearrangementWriter at-

tribute), 129

F
false_values (airr.schema.Schema attribute), 129
false_values (in module airr.schema), 132, 133
fields (airr.io.RearrangementReader attribute), 128
fields (airr.io.RearrangementWriter attribute), 129
from_bool() (airr.schema.Schema method), 130

I
info (airr.schema.Schema attribute), 129
info (in module airr.schema), 132, 133

L
load_rearrangement() (in module airr), 126
load_repertoire() (in module airr), 127

M
merge_rearrangement() (in module airr), 126

N
next() (airr.io.RearrangementReader method), 128

O
optional (airr.schema.Schema attribute), 129
optional (in module airr.schema), 132, 133

P
properties (airr.schema.Schema attribute), 129
properties (in module airr.schema), 132, 133

R
read_rearrangement() (in module airr), 125
RearrangementReader (class in airr.io), 128
RearrangementSchema (in module airr.schema),

132
RearrangementWriter (class in airr.io), 128
repertoire_template() (in module airr), 128
RepertoireSchema (in module airr.schema), 133
required (airr.schema.Schema attribute), 129
required (in module airr.schema), 132, 133

S
Schema (class in airr.schema), 129
spec() (airr.schema.Schema method), 130

T
to_bool() (airr.schema.Schema method), 130

to_float() (airr.schema.Schema method), 130
to_int() (airr.schema.Schema method), 130
true_values (airr.schema.Schema attribute), 130
true_values (in module airr.schema), 132, 133
type() (airr.schema.Schema method), 131

V
validate_header() (airr.schema.Schema method),

131
validate_object() (airr.schema.Schema method),

131
validate_rearrangement() (in module airr), 127
validate_repertoire() (in module airr), 127
validate_row() (airr.schema.Schema method), 131

W
write() (airr.io.RearrangementWriter method), 129
write_repertoire() (in module airr), 127

154 Index

	Introduction to the AIRR Standards
	Table of Contents
	Getting Started
	Release Notes
	AIRR Standards
	Data Submission and Query
	Software
	Community Resources
	Appendix A: Key Terms
	References

	Bibliography
	Index

