

AIRR Community

The Adaptive Immune Receptor Repertoire (AIRR) Community of The Antibody Society is a
research-driven group that is organizing and coordinating stakeholders in the use of
next-generation sequencing (NGS) technologies to study antibody/B-cell and T-cell receptor
repertoires. Recent advances in sequencing technology have made it possible to sample the
immune repertoire in exquisite detail. AIRR sequencing has enormous promise for understanding
the dynamics of the immune repertoire in vaccinology, infectious disease, autoimmunity, and
cancer biology, but also poses substantial challenges. The AIRR Community was established
to meet these challenges.

Introduction to the AIRR Standards

The AIRR Community is developing a set of standards for describing, reporting,
storing, and sharing adaptive immune receptor repertoire (AIRR) data, such as
sequences of antibodies and T cell receptors (TCRs). Some specific efforts
include:

	The MiAIRR standard for describing minimal information about AIRR datasets, including
sample collection and data processing information.

	Data submission guidelines and workflows.

	Data representations (file format) specifications for storing large amounts of annotated AIRR data.

	API to query and download AIRR data from repositories/databases as part of the AIRR Data Commons.

	A community standard for software tools which will allow conforming tools to gain community recognition.

	Set of reference software tools for reading, writing and validating data in the AIRR standards.

	A database and web submission frontend for inferred germline genes

Table of Contents

	Getting Started
	MiAIRR standard for study data submission

	AIRR Data Commons for query and download of AIRR-seq data

	Resources related to data representations and software development

	Software tools and libraries

	Tutorials, examples and workflows

	Release Notes
	Schema Release Notes

	Python Library Release Notes

	R Library Release Notes

	AIRR Standards
	Study Reporting (MiAIRR)

	Data Model

	V(D)J Sequence Representation

	Metadata Representation

	Software Guidelines

	Data Commons API

	Ontologies and Vocabularies

	Schema Release Notes

	Data Submission and Query
	Data Submission Guides for AIRR-seq studies

	Data Submission for Inferred Genes and Alleles

	Data Query and Download from the AIRR Data Commons

	Software
	 Python Library

	 R Library

	 ADC API Reference Implementation

	Community
	Resources and Tools Supporting AIRR Standards

	Useful Websites for the AIRR Community

	Glossary

	References

Getting Started

This website provides information and resources regarding
the AIRR Community Standards for the diverse community of immunology
researchers, bioinformaticians, and software developers.

MiAIRR standard for study data submission

	Gather experimental and analysis information about your study to conform to the MiAIRR standard
(minimal information about adaptive immune receptor repertoires).

	Submission of your study data to a public repository.

AIRR Data Commons for query and download of AIRR-seq data

	Query publicly available AIRR-seq studies in the AIRR Data Commons.

Resources related to data representations and software development

	Schema, definitions and file formats for the AIRR Data Model. The AIRR Data Model
defines the structure and relationship for the MiAIRR data elements.

	Software guidelines for tools developers to enable rigorous and reproducible immune
repertoire research.

	AIRR Data Commons API provides programmatic access to query and download AIRR-seq data.

Software tools and libraries

	Python reference library for reading/writing/validating AIRR data files.

	R reference library for reading/writing/validating AIRR data files.

	ADC API reference implementation for a local data repository.

	Resources and tools that support the AIRR Standards.

Tutorials, examples and workflows

	AIRR Rearrangement TSV Interoperability Example

	ADC API Query and Analysis Example

	Scientific Query Scenarios for AIRR Data Commons API

AIRR Rearrangement TSV Interoperability Example

The example that follows illustrates the interoperability provided by the
AIRR Rearrangement schema. The code provided demonstrates how to
take AIRR formatted data output by IgBLAST and combine it with data
processed by IMGT/HighV-QUEST that has converted to the AIRR format by
Change-O. Then, the merged output of these two distinct tools is used to
(a) create MiAIRR compliant GenBank/TLS submission files, and (b) perform
a simple V gene usage analysis task.

Data

We’ve hosted a small set of example data from BioProject PRJNA338795
(Vander Heiden et al, 2017. J Immunol.) containing both input and output of the
example. It may be downloaded from:

Example Data [http://clip.med.yale.edu/immcantation/examples/airr_example_data.zip]

Walkthrough

[image: ../_images/datarep_cmd_flowchart.png]
Flowchart of the example steps.

Environment setup

We’ll use the Immcantation docker image for this example, which comes loaded
with all the tools used in the steps that follow:

Download the image
docker pull kleinstein/immcantation:devel

Invoke a shell session inside the Immcantation docker image
Map example data (~/data) to the container's /data directory
$> docker run -it -v ~/data:/data:z kleinstein/immcantation:devel bash

Generate AIRR formatted TSV files

TSV files compliant with the AIRR Rearrangement schema may be
output directly from IgBLAST v1.9+ or generated from IMGT/HighV-QUEST
output (or IgBLAST <=1.8 ouput) using the MakeDb parser provided by
Change-O:

Generate TSV directly with IgBLAST
$> cd /data
$> export IGDATA=/usr/local/share/igblast
$> igblastn -query HD13M.fasta -out HD13M_fmt19.tsv -outfmt 19 \
 -germline_db_V $IGDATA/database/imgt_human_ig_v \
 -germline_db_D $IGDATA/database/imgt_human_ig_d \
 -germline_db_J $IGDATA/database/imgt_human_ig_j \
 -auxiliary_data $IGDATA/optional_file/human_gl.aux \
 -ig_seqtype Ig -organism human \
 -domain_system imgt

Generate TSV from IMGT/HighV-QUEST results using changeo:MakeDb
$> MakeDb.py imgt -i HD13N_imgt.txz -s HD13N.fasta \
 --scores --partial --format airr

Generate GenBank/TLS submission files

AIRR TSV files can be input directly in Change-O’s ConvertDb-genbank
tool to generate MiAIRR compliant files for submission to GenBank/TLS:

Generate ASN files from IgBLAST output
$> ConvertDb.py genbank -d HD13M_fmt7_db-pass.tsv --format airr \
 --inf IgBLAST:1.7.0 --organism "Homo sapiens" \
 --tissue "Peripheral blood" --cell "naive B cell" \
 --id --asn -sbt HD13M.sbt

Generate ASN files from IMGT/HighV-QUEST output
$> ConvertDb.py genbank -d HD13N_imgt_db-pass.tsv --format airr \
 --inf IMGT/HighV-QUEST:1.5.7.1 --organism "Homo sapiens" \
 --tissue "peripheral blood" --cell "naive B cell" \
 --cregion c_call --id --asn -sbt HD13M.sbt

Merge files and count V family usage

AIRR TSV files from different tools and easy combined to perform analysis
on data generated using different software. Below is shown a simple V
family usage analysis after merging the IgBLAST and IMGT/HighV-QUEST
outputs into a single table:

Count V family usage in R
Imports
$> R
R> library(alakazam)
R> library(dplyr)
R> library(ggplot2)

Merge IgBLAST and IMGT/HighV-QUEST results
R> db_m <- read.delim("HD13M_fmt7_db-pass.tsv")
R> db_n <- read.delim("HD13N_imgt_db-pass.tsv")
R> db_m$cell_type <- "memory"
R> db_n$cell_type <- "naive"
R> db <- bind_rows(db_m, db_n)

Subset to heavy chain
R> db <- subset(db, grepl("IGH", v_call))

Count combined V gene usage
R> v_usage <- countGenes(db, "v_call", groups="cell_type",
 mode="family")

Plot V family usage
R> ggplot(v_usage, aes(x=GENE, y=SEQ_FREQ, fill=cell_type)) +
 geom_col(position="dodge") +
 scale_fill_brewer(name="Cell type", palette="Set1") +
 xlab("") +
 ylab("Fraction of repertoire")

[image: ../_images/datarep_cmd_vusage.png]
V family usage for the combined data set.

ADC API Query and Analysis Example

This example shows how repertoires and associated rearrangments may be
queried from a data repository using the ADC API and then a simple
analysis is performed. The example is split between two python
scripts; one that performs the query and saves the data into files,
and another that reads the data from the files and generates a grouped
CDR3 amino acid length distribution plot. The two scripts could be
combined into one, but this example illustrates how the data can be
saved into files for later use. The example uses the AIRR standards
python library.

Data

This example retrieves data for the following study, which is identified
by NCBI BioProject PRJNA300878. In this example, we are only going to
query and retrieve the T cell repertoires.

Rubelt, F. et al., 2016. Individual heritable differences result in
unique cell lymphocyte receptor repertoires of naive and
antigen-experienced cells. Nature communications, 7, p.11112.

Basic study description:

	5 pairs of human twins

	B-cells and T-cells sequenced

	B-cells sorted into naive and memory

	T-cells sorted into naive CD4, naive CD8, memory CD4 and memory CD8

	Total of 60 repertoires: 20 B-cell repertoires and 40 T-cell repertoires

Walkthrough

We’ll use the airr-standards docker image for this example, which
comes loaded with all the python packages needed. You will want to map
a local directory inside the docker container so you can access the
data and analysis results afterwards:

Download the image
docker pull airrc/airr-standards:latest

Make local temporary directory to hold the data
mkdir adc_example
cd adc_example

Invoke a shell session inside the docker image
docker run -it -v $PWD:/data airrc/airr-standards:latest bash

The first python script queries the data from the VDJServer data
repository and saves them into files:

Query the data
cd /data
python3 /airr-standards/docs/examples/api/retrieve_data.py

Only a subset of the data is downloaded for illustration purposes, but
review the code to see how all data can be downloaded. A total of 40
repertoires and 300,178 rearrangements should be downloaded. The
repertoire metadata is saved in the repertoires.airr.json file,
and the rearrangements are saved in the rearrangements.tsv
file. The script should take a few minutes to run and produce the
following display messages:

 Info: VDJServer Community Data Portal
 version: 1.3
description: VDJServer ADC API response for repertoire query
Received 40 repertoires.
Retrieving rearrangements for repertoire: 5168912186246295065-242ac11c-0001-012
Retrieved 9768 rearrangements for repertoire: 5168912186246295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5338391595746455065-242ac11c-0001-012
Retrieved 5521 rearrangements for repertoire: 5338391595746455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4858300151399575065-242ac11c-0001-012
Retrieved 2885 rearrangements for repertoire: 4858300151399575065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5039977268020375065-242ac11c-0001-012
Retrieved 4053 rearrangements for repertoire: 5039977268020375065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6240077029868695065-242ac11c-0001-012
Retrieved 3506 rearrangements for repertoire: 6240077029868695065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6389112395039895065-242ac11c-0001-012
Retrieved 2289 rearrangements for repertoire: 6389112395039895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5939858815878295065-242ac11c-0001-012
Retrieved 3637 rearrangements for repertoire: 5939858815878295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6088937130722455065-242ac11c-0001-012
Retrieved 9028 rearrangements for repertoire: 6088937130722455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7446748091679895065-242ac11c-0001-012
Retrieved 1540 rearrangements for repertoire: 7446748091679895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7591789137265815065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7591789137265815065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7066128089908375065-242ac11c-0001-012
Retrieved 5662 rearrangements for repertoire: 7066128089908375065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5624006920930455065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 5624006920930455065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8961797805343895065-242ac11c-0001-012
Retrieved 1179 rearrangements for repertoire: 8961797805343895065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 9084118473933975065-242ac11c-0001-012
Retrieved 4464 rearrangements for repertoire: 9084118473933975065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8485700680582295065-242ac11c-0001-012
Retrieved 3908 rearrangements for repertoire: 8485700680582295065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7309695685264535065-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7309695685264535065-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8425807333172056551-242ac11c-0001-012
Retrieved 6863 rearrangements for repertoire: 8425807333172056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8263242821018456551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 8263242821018456551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8733756488295256551-242ac11c-0001-012
Retrieved 5298 rearrangements for repertoire: 8733756488295256551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 8602072790999896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 8602072790999896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7313153105470296551-242ac11c-0001-012
Retrieved 9121 rearrangements for repertoire: 7313153105470296551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6964444710708056551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 6964444710708056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7640859110155096551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7640859110155096551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7461458326201176551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7461458326201176551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 5953881855632216551-242ac11c-0001-012
Retrieved 5916 rearrangements for repertoire: 5953881855632216551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 7158276584776536551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 7158276584776536551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6393557657723736551-242ac11c-0001-012
Retrieved 7257 rearrangements for repertoire: 6393557657723736551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 6205695788196696551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 6205695788196696551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4476756703191896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4476756703191896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4357957907784536551-242ac11c-0001-012
Retrieved 7033 rearrangements for repertoire: 4357957907784536551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4931851437876056551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4931851437876056551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 4744762662462296551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 4744762662462296551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3252733973504856551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 3252733973504856551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2989624276951896551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2989624276951896551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3628844259615576551-242ac11c-0001-012
Retrieved 5208 rearrangements for repertoire: 3628844259615576551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 3438706057421656551-242ac11c-0001-012
Retrieved 9530 rearrangements for repertoire: 3438706057421656551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2197374609531736551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2197374609531736551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 1993707260355416551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 1993707260355416551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2541616238306136551-242ac11c-0001-012
Retrieved 6512 rearrangements for repertoire: 2541616238306136551-242ac11c-0001-012
Retrieving rearrangements for repertoire: 2366080924918616551-242ac11c-0001-012
Retrieved 10000 rearrangements for repertoire: 2366080924918616551-242ac11c-0001-012

The second python script loads the data from the files and generates a
CDR3 amino acid length distribution that is grouped by the T cell
subset. This study performs flow sorting to generate four T cell
subsets: naive CD4+, naive CD8+, memory CD4+, memory CD8+. The script
uses the repertoire metadata to determine the T cell subset for the
rearrangement, tabulates the counts, normalizes them, and generates a
grouped bar chart with the results:

Run the analysis
python3 /airr-standards/docs/examples/api/analyze_data.py

The figure is placed in the plot.png file and should look like this:

[image: ../_images/api_analysis_plot.png]
CDR3 AA Length Histogram grouped by T cell subsets.

Scientific Query Scenarios for AIRR Data Commons API

The AIRR Common Repository Working Group (CRWG [https://www.antibodysociety.org/airrc/working_groups/repository/]) has defined a
number of sample scientific query scenarios to guide the design of the
ADC API. The Design Decisions [https://github.com/airr-community/common-repo-wg/blob/master/decisions.md] document lists the
major design choices for the API, and the API is currently defined
using the OpenAPI V2.0 Specification [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md]. This document describes the
query examples with associated JSON definitions that can be submitted
to an AIRR repository.

There are two main query endpoints in the API: /repertoire for
querying MiAIRR-compliant study metadata and /rearrangement for
querying rearrangement annotations. Most scientific queries will
involve both endpoints. The basic workflow involves first
querying /repertoire to get the list of repertoires that meet the
search criteria on study, subject, and sample metadata. Secondly, the
identifiers from the repertoires in the first query are passed to
the /rearrangement endpoint along with any search criteria on the
rearrangement annotations. The resultant rearrangements can be
downloaded as JSON or in the AIRR TSV format.

Query Example 1

What human full length TCR-beta sequences have junction amino acid sequence: “CASSYIKLN”?

	The JSON query definition for /repertoire endpoint. The ontology
identifier 9606 requests human and TRB is the locus of interest.

{
 "filters":{
 "op":"and",
 "content": [
 {
 "op":"=",
 "content": {
 "field":"subject.organism.id",
 "value":"9606"
 }
	 },
	 {
 "op":"=",
 "content": {
 "field":"sample.pcr_target.pcr_target_locus",
 "value":"TRB"
 }
	 }
]
 }
}

	That query does not request full length sequences. We can enhance the query by adding a clause for
the sample.complete_sequences field.

{
 "filters":{
 "op":"and",
 "content": [{
 "op":"=",
 "content": {
 "field":"subject.organism.id",
 "value":"9606"
 }
 },
 {
 "op":"=",
 "content": {
 "field":"sample.pcr_target.pcr_target_locus",
 "value":"TRB"
 }
 },
 {
 "op":"or",
 "content":[{
 "op":"=",
 "content": {
 "field":"sample.complete_sequences",
 "value":"complete"
 }
 },
 {
 "op":"=",
 "content": {
 "field":"sample.complete_sequences",
 "value":"complete+untemplated"
 }
 }]
 }]
 }
}

	The JSON query definition for /rearrangement endpoint.
The repertoire identifiers (repertoire_id) in the query are just examples, you would replace them with the actual identifiers
returned from the above repertoire query. The query performs an exact match of the junction amino acid sequence.

{
 "filters":{
 "op":"and",
 "content": [
 {
 "op":"in",
 "content": {
 "field":"repertoire_id",
 "value":[
 "2366080924918616551-242ac11c-0001-012",
 "2541616238306136551-242ac11c-0001-012",
 "1993707260355416551-242ac11c-0001-012",
 "1841923116114776551-242ac11c-0001-012"
]
 }
 },
 {
 "op":"=",
 "content": {
 "field":"junction_aa",
 "value":"CARDPRSYHAFDIW"
 }
 }
]
 },
 "fields":["repertoire_id","sequence_id","v_call","productive"],
 "format":"tsv"
}

Query Example 2

What human full length IgH sequences have been found in patients with an autoimmune diagnosis.

	TO BE WRITTEN

Query Example 3

What is the antibody IG heavy chain V usage in people who have diabetes?

	TO BE WRITTEN

Query Example 4

Give me all the anti-HIV antibody sequences that use IGHV1-69 in HIV infected individuals?

	TO BE WRITTEN

Query Example 5

Repertoires from cancer patients where we have pre- and post-immunotherapy peripheral blood (or tumor biopsy).

	TO BE WRITTEN

Query Example 6

Return TCRs that score highly on a position weight matrix from subjects with a particular HLA allele that have been infected with TB.

	TO BE WRITTEN

Query Example 7

Repertoires from female patients with cancer.

	TO BE WRITTEN

Release Notes

Schema Release Notes

Version 1.3.0: May 28, 2020

Version 1.3 schema release.

New Schema:

	Introduced the Repertoire Schema for describing study meta data.

	Introduced the PCRTarget Schema for describing primer target locations.

	Introduced the SampleProcessing Schema for describing experimental processing
steps for a sample.

	Replaced the SoftwareProcessing schema with the DataProcessing schema.

	Introduced experimental schema for clonal clusters, lineage trees, tree nodes,
and cells as Clone, Tree, Node, and Cell objects, respectively.

General Updates:

	Added multiple additional attributes to a large number of schema propertes as AIRR
extension attributes in the x-airr field. The new Attributes object
contains definitions for these x-airr field attributes.

	Added the top level required property to all relevant schema objects.

	Added the title attribute containing the short, descriptive name to all
relevant schema object fields.

	Added an example attribute containing an example data value to multiple
schema object fields.

AIRR Data Commons API:

	Added OpenAPI V2 specification (specs/adc-api.yaml) for AIRR Data Commons
API major version 1.

Ontology Support:

	Added Ontology and CURIEResolution objects to support ontologies.

	Added vocabularies/ontologies as JSON string for: Cell subset, Target substrate, Library generation method,
Complete sequences, Physical linkage of different loci.

Rearrangement Schema:

	Added the complete_vdj field to annotate whether a V(D)J alignment was
full length.

	Added the junction_length_aa field defining the length of the junction
amino acid sequence.

	Added the repertoire_id, sample_processing_id, and
data_processing_id fields to serve as linkers to the appropriate metadata
objects.

	Added a controlled vocabulary to the locus field:
IGH, IGI, IGK, IGL, TRA, TRB, TRD, TRG.

	Deprecated the rearrangement_set_id and germline_database fields.

	Deprecated rearrangement_id field and made the sequence_id
field be the primary unique identifer for a rearrangement record,
both in files and data repositories.

	Added support secondary D gene rearrangement through the additional fields:
d2_call, d2_score, d2_identity, d2_support, d2_cigar
np3, np3_aa, np3_length, n3_length, p5d2_length,
p3d2_length, d2_sequence_start, d2_sequence_end,
d2_germline_start, d2_germline_start, d2_alignment_start,
d2_alignment_end, d2_sequence_alignment, d2_sequence_alignment_aa,
d2_germline_alignment, d2_germline_alignment_aa.

	Updated field definitions with more concise V(D)J call descriptions.

Alignment Schema:

	Deprecated the rearrangement_set_id and germline_database fields.

	Added the data_processing_id field.

Study Schema:

	Added the study_type field containing an ontology defined term
for the study design.

Subject Schema:

	Deprecated the organism field in favor of the new species field.

	Deprecated the age field.

	Introduced age ranges: age_min, age_max, and age_unit.

Diagnosis Schema:

	Changed the type of the disease_diagnosis field from string to Ontology.

Sample Schema:

	Changed the type of the tissue field from string to Ontology.

CellProcessing Schema:

	Changed the type of the cell_subset field from string to Ontology.

	Introduced the cell_species field which denotes the species from which the
analyzed cells originate.

NucleicAcidProcessing Schema:

	Defined the template_class field as type string.

	Added a controlled vocabulary the library_generation_method field.

	Changed the controlled vocabulary terms of complete_sequences.
Replacing complete & untemplated with complete+untemplated and adding
mixed.

	Added the pcr_target field referencing the new PCRTarget schema object.

SequencingRun Schema:

	Added the sequencing_run_id field which serves as the object identifer
field.

	Added the sequencing_files field which links to the RawSequenceData
schema objects defining the raw read data.

RawSequenceData Schema:

	Added the file_type field defining the sequence file type. This field is a
controlled vocabulary restricted to: fasta, fastq.

	Added the paired_read_length field defining mate-pair read lengths.

	Defined the read_direction and paired_read_direction fields as type string.

DataProcessing Schema:

	Replaces the SoftwareProcessing object.

	Added data_processing_id, primary_annotation, data_processing_files,
germline_database and analysis_provenance_id fields.

Version 1.2.1: Oct 5, 2018

Minor patch release.

	Schema gene vs segment terminology corrections

	Added Info object

	Updated cell_subset URL in AIRR schema

Version 1.2.0: Aug 18, 2018

Peer reviewed released of the Rearrangement schema.

	Definition change for the coordinate fields of the Rearrangement and Alignment schema.
Coordinates are now defined as 1-based closed intervals, instead of 0-based half-open
intervals (as previously defined in v1.1 of the schema).

	Removed foreign study_id fields

	Introduced keywords_study field

Version 1.1.0: May 3, 2018

Initial public released of the Rearrangement and Alignment schemas.

	Added required and nullable constrains to AIRR schema.

	Schema definitions for MiAIRR attributes and ontology.

	Introduction of an x-airr object indicating if field is required by MiAIRR.

	Rename rearrangement_set_id to data_processing_id.

	Rename study_description to study_type.

	Added physical_quantity format.

	Raw sequencing files into separate schema object.

	Rename Attributes object.

	Added primary_annotation and repertoire_id.

	Added diagnosis to repertoire object.

	Added ontology for organism.

	Added more detailed specification of sequencing_run, repertoire and
rearrangement.

	Added repertoire schema.

	Rename definitions.yaml to airr-schema.yaml.

	Removed c_call, c_score and c_cigar from required as this is not
typical reference aligner output.

	Renamed vdj_score, vdj_identity, vdj_evalue, and vdj_cigar
to score, identity, evalue, and cigar.

	Added missing c_identity and c_evalue fields to Rearrangement spec.

	Swapped order of N and S operators in CIGAR string.

	Some description clean up for consistency in Rearrangement spec.

	Remove repeated objects in definitions.yaml.

	Added Alignment object to definitions.yaml.

	Updated MiARR format consistency check TSV with junction change.

	Changed definition from functional to productive.

Version 1.0.1: Jan 9, 2018

MiAIRR v1 official release and initial draft of Rearrangement and Alignment schemas.

Python Library Release Notes

Version 1.3.0: May 30, 2020

	Updated schema set to v1.3.

	Added load_repertoire, write_repertoire, and validate_repertoire
to airr.interface to read, write and validate Repertoire metadata,
respectively.

	Added repertoire_template to airr.interface which will return a
complete repertoire object where all fields have null values.

	Added validate_object to airr.schema that will validate a single
repertoire object against the schema.

	Extended the airr-tools commandline program to validate both rearrangement
and repertoire files.

Version 1.2.1: October 5, 2018

	Fixed a bug in the python reference library causing start coordinate values
to be empty in some cases when writing data.

Version 1.2.0: August 17, 2018

	Updated schema set to v1.2.

	Several improvements to the validate_rearrangement function.

	Changed behavior of all airr.interface functions to accept a file path
(string) to a single Rearrangement TSV, instead of requiring a file handle
as input.

	Added base argument to RearrangementReader and RearrangementWriter
to support optional conversion of 1-based closed intervals in the TSV to
python-style 0-based half-open intervals. Defaults to conversion.

	Added the custom exception ValidationError for handling validation checks.

	Added the validate argument to RearrangementReader which will raise
a ValidationError exception when reading files with missing required
fields or invalid values for known field types.

	Added validate argument to all type conversion methods in Schema,
which will now raise a ValidationError exception for value that cannot be
converted when set to True. When set False (default), the previous
behavior of assigning None as the converted value is retained.

	Added validate_header and validate_row methods to Schema and
removed validations methods from RearrangementReader.

	Removed automatic closure of file handle upon reaching the iterator end in
RearrangementReader.

Version 1.1.0: May 1, 2018

Initial release.

R Library Release Notes

Version 1.3.0: May 26, 2020

	Updated schema set to v1.3.

	Added info slot to Schema object containing general schema
information.

Version 1.2.0: August 17, 2018

	Updated schema set to v1.2.

	Changed defaults to base="1" for read and write functions.

	Updated example TSV file with coordinate changes, addition of
germline_alignment data and simplification of sequence_id
values.

Version 1.1.0: May 1, 2018

Initial release.

AIRR Standards

Information about all of the AIRR Community standards.

Table of Contents

	Study Reporting (MiAIRR)

	Data Model

	V(D)J Sequence Representation

	Metadata Representation

	Software Guidelines

	Data Commons API

	Ontologies and Vocabularies

	Schema Release Notes

Introduction to MiAIRR

Summary

One of the primary initiatives of the Adaptive Immune Receptor
Repertoire (AIRR) Community has been to develop a set of metadata
standards for the submission of AIRR sequencing datasets. This work has
been carried out by the AIRR Community Minimal Standards Working Group [http://airr-community.org/working_groups/minimal_standards].
In order to support reproducibility, standard quality control, and data
deposition in a common repository, the AIRR Community has agreed to six
high-level data sets that will guide the publication, curation and
sharing of AIRR-Seq data and metadata: Study and subject, sample
collection, sample processing and sequencing, raw sequences, processing
of sequence data, and processed AIRR sequences. The detailed data
elements within these sets are defined here
(Download as TSV).

[image: A scheme of the MiAIRR data set and data elements]
Schema of MiAIRR data sets and the individual data elements of each
set.

Topics

	MiAIRR Data Elements

	National Center for Biotechnology Information (NCBI) Submission
	Guide for submission of AIRR-seq data to NCBI

	MiAIRR-to-NCBI Submission Manual

	MiAIRR-to-NCBI Specification

	Introduction

	Requirement levels of fields
	Clarification of Terms

	Categories of AIRR Schema Fields

	Compliance with the MiAIRR Data Standard

	Metadata annotation guidelines
	Purpose of this Document

	Clarification of Terms

	Individual fields

	Specific Use Cases and Experimental Setups

MiAIRR Data Elements

The AIRR Community has agreed to six
high-level data sets that will guide the publication, curation and
sharing of AIRR-Seq data and metadata: Study and subject, sample
collection, sample processing and sequencing, raw sequences, processing
of sequence data, and processed AIRR sequences.

Download as TSV.

	Set / Subset

	Designation / Field

	Type / Format

	Level

	Definition

	Example

	1 / study

	Study ID
 study_id

	string
 free text

	important

	Unique ID assigned by study registry

	PRJNA001

	1 / study

	Study title
 study_title

	string
 free text

	important

	Descriptive study title

	Effects of sun light exposure of the Treg repertoire

	1 / study

	Study type
 study_type

	Ontology
 Ontology: { top_node: { id: NCIT:C63536, value: Study}}

	important

	Type of study design

	id: NCIT:C15197, value: Case-Control Study

	1 / study

	Study inclusion/exclusion criteria
 inclusion_exclusion_criteria

	string
 free text

	important

	List of criteria for inclusion/exclusion for the study

	Include: Clinical P. falciparum infection; Exclude: Seropositive for HIV

	1 / study

	Grant funding agency
 grants

	string
 free text

	important

	Funding agencies and grant numbers

	NIH, award number R01GM987654

	1 / study

	Contact information (data collection)
 collected_by

	string
 free text

	important

	Full contact information of the data collector, i.e. the person who is legally responsible for data collection and release. This should include an e-mail address.

	Dr. P. Stibbons, p.stibbons@unseenu.edu

	1 / study

	Lab name
 lab_name

	string
 free text

	important

	Department of data collector

	Department for Planar Immunology

	1 / study

	Lab address
 lab_address

	string
 free text

	important

	Institution and institutional address of data collector

	School of Medicine, Unseen University, Ankh-Morpork, Disk World

	1 / study

	Contact information (data deposition)
 submitted_by

	string
 free text

	important

	Full contact information of the data depositor, i.e. the person submitting the data to a repository. This is supposed to be a short-lived and technical role until the submission is relased.

	Adrian Turnipseed, a.turnipseed@unseenu.edu

	1 / study

	Relevant publications
 pub_ids

	string
 free text

	important

	Publications describing the rationale and/or outcome of the study

	PMID:85642

	1 / study

	Keywords for study
 keywords_study

	array of string
 Controlled vocabulary: contains_ig, contains_tcr, contains_single_cell, contains_paired_chain

	important

	Keywords describing properties of one or more data sets in a study

	[‘contains_ig’, ‘contains_paired_chain’]

	1 / subject

	Subject ID
 subject_id

	string
 free text

	important

	Subject ID assigned by submitter, unique within study

	SUB856413

	1 / subject

	Synthetic library
 synthetic

	boolean
 true | false

	essential

	TRUE for libraries in which the diversity has been synthetically generated (e.g. phage display)

	

	1 / subject

	Organism
 species

	Ontology
 Ontology: { top_node: { id: NCBITAXON:7776, value: Gnathostomata}}

	essential

	Binomial designation of subject’s species

	id: NCBITAXON:9606, value: Homo sapiens

	1 / subject

	Sex
 sex

	string
 Controlled vocabulary: male, female, pooled, hermaphrodite, intersex, not collected, not applicable

	important

	Biological sex of subject

	female

	1 / subject

	Age minimum
 age_min

	number
 positive number

	important

	Specific age or lower boundary of age range.

	60

	1 / subject

	Age maximum
 age_max

	number
 positive number

	important

	Upper boundary of age range or equal to age_min for specific age. This field should only be null if age_min is null.

	80

	1 / subject

	Age unit
 age_unit

	Ontology
 Ontology: { top_node: { id: UO:0000003, value: time unit}}

	important

	Unit of age range

	id: UO:0000036, value: year

	1 / subject

	Age event
 age_event

	string
 free text

	important

	Event in the study schedule to which Age refers. For NCBI BioSample this MUST be sampling. For other implementations submitters need to be aware that there is currently no mechanism to encode to potential delta between Age event and Sample collection time, hence the chosen events should be in temporal proximity.

	enrollment

	1 / subject

	Ancestry population
 ancestry_population

	string
 free text

	important

	Broad geographic origin of ancestry (continent)

	list of continents, mixed or unknown

	1 / subject

	Ethnicity
 ethnicity

	string
 free text

	important

	Ethnic group of subject (defined as cultural/language-based membership)

	English, Kurds, Manchu, Yakuts (and other fields from Wikipedia)

	1 / subject

	Race
 race

	string
 free text

	important

	Racial group of subject (as defined by NIH)

	White, American Indian or Alaska Native, Black, Asian, Native Hawaiian or Other Pacific Islander, Other

	1 / subject

	Strain name
 strain_name

	string
 free text

	important

	Non-human designation of the strain or breed of animal used

	C57BL/6J

	1 / subject

	Relation to other subjects
 linked_subjects

	string
 free text

	important

	Subject ID to which Relation type refers

	SUB1355648

	1 / subject

	Relation type
 link_type

	string
 free text

	important

	Relation between subject and linked_subjects, can be genetic or environmental (e.g.exposure)

	father, daughter, household

	1 / diagnosis and intervention

	Study group description
 study_group_description

	string
 free text

	important

	Designation of study arm to which the subject is assigned to

	control

	1 / diagnosis and intervention

	Diagnosis
 disease_diagnosis

	Ontology
 Ontology: { top_node: { id: DOID:4, value: disease}}

	important

	Diagnosis of subject

	id: DOID:9538, value: multiple myeloma

	1 / diagnosis and intervention

	Length of disease
 disease_length

	string
 free text

	important

	Time duration between initial diagnosis and current intervention

	23 months

	1 / diagnosis and intervention

	Disease stage
 disease_stage

	string
 free text

	important

	Stage of disease at current intervention

	Stage II

	1 / diagnosis and intervention

	Prior therapies for primary disease under study
 prior_therapies

	string
 free text

	important

	List of all relevant previous therapies applied to subject for treatment of Diagnosis

	melphalan/prednisone

	1 / diagnosis and intervention

	Immunogen/agent
 immunogen

	string
 free text

	important

	Antigen, vaccine or drug applied to subject at this intervention

	bortezomib

	1 / diagnosis and intervention

	Intervention definition
 intervention

	string
 free text

	important

	Description of intervention

	systemic chemotherapy, 6 cycles, 1.25 mg/m2

	1 / diagnosis and intervention

	Other relevant medical history
 medical_history

	string
 free text

	important

	Medical history of subject that is relevant to assess the course of disease and/or treatment

	MGUS, first diagnosed 5 years prior

	2 / sample

	Biological sample ID
 sample_id

	string
 free text

	important

	Sample ID assigned by submitter, unique within study

	SUP52415

	2 / sample

	Sample type
 sample_type

	string
 free text

	important

	The way the sample was obtained, e.g. fine-needle aspirate, organ harvest, peripheral venous puncture

	Biopsy

	2 / sample

	Tissue
 tissue

	Ontology
 Ontology: { top_node: { id: UBERON:0010000, value: multicellular anatomical structure}}

	important

	The actual tissue sampled, e.g. lymph node, liver, peripheral blood

	id: UBERON:0002371, value: bone marrow

	2 / sample

	Anatomic site
 anatomic_site

	string
 free text

	important

	The anatomic location of the tissue, e.g. Inguinal, femur

	Iliac crest

	2 / sample

	Disease state of sample
 disease_state_sample

	string
 free text

	important

	Histopathologic evaluation of the sample

	Tumor infiltration

	2 / sample

	Sample collection time
 collection_time_point_relative

	string
 free text

	important

	Time point at which sample was taken, relative to Collection time event

	14 d

	2 / sample

	Collection time event
 collection_time_point_reference

	string
 free text

	important

	Event in the study schedule to which Sample collection time relates to

	Primary vaccination

	2 / sample

	Biomaterial provider
 biomaterial_provider

	string
 free text

	important

	Name and address of the entity providing the sample

	Tissues-R-Us, Tampa, FL, USA

	3 / process (cell)

	Tissue processing
 tissue_processing

	string
 free text

	important

	Enzymatic digestion and/or physical methods used to isolate cells from sample

	Collagenase A/Dnase I digested, followed by Percoll gradient

	3 / process (cell)

	Cell subset
 cell_subset

	Ontology
 Ontology: { top_node: { id: CL:0000542, value: lymphocyte}}

	important

	Commonly-used designation of isolated cell population

	id: CL:0000972, value: class switched memory B cell

	3 / process (cell)

	Cell subset phenotype
 cell_phenotype

	string
 free text

	important

	List of cellular markers and their expression levels used to isolate the cell population

	CD19+ CD38+ CD27+ IgM- IgD-

	3 / process (cell)

	Cell species
 cell_species

	Ontology
 Ontology: { top_node: { id: NCBITAXON:7776, value: Gnathostomata}}

	defined

	Binomial designation of the species from which the analyzed cells originate. Typically, this value should be identical to species, if which case it SHOULD NOT be set explicitly. Howver, there are valid experimental setups in which the two might differ, e.g. chimeric animal models. If set, this key will overwrite the species information for all lower layers of the schema.

	id: NCBITAXON:9606, value: Homo sapiens

	3 / process (cell)

	Single-cell sort
 single_cell

	boolean
 true | false

	important

	TRUE if single cells were isolated into separate compartments

	

	3 / process (cell)

	Number of cells in experiment
 cell_number

	integer
 positive integer

	important

	Total number of cells that went into the experiment

	1000000

	3 / process (cell)

	Number of cells per sequencing reaction
 cells_per_reaction

	integer
 positive integer

	important

	Number of cells for each biological replicate

	50000

	3 / process (cell)

	Cell storage
 cell_storage

	boolean
 true | false

	important

	TRUE if cells were cryo-preserved between isolation and further processing

	True

	3 / process (cell)

	Cell quality
 cell_quality

	string
 free text

	important

	Relative amount of viable cells after preparation and (if applicable) thawing

	90% viability as determined by 7-AAD

	3 / process (cell)

	Cell isolation / enrichment procedure
 cell_isolation

	string
 free text

	important

	Description of the procedure used for marker-based isolation or enrich cells

	Cells were stained with fluorochrome labeled antibodies and then sorted on a FlowMerlin (CE) cytometer.

	3 / process (cell)

	Processing protocol
 cell_processing_protocol

	string
 free text

	important

	Description of the methods applied to the sample including cell preparation/ isolation/enrichment and nucleic acid extraction. This should closely mirror the Materials and methods section in the manuscript.

	Stimulated wih anti-CD3/anti-CD28

	3 / process (nucleic acid)

	Target substrate
 template_class

	string
 Controlled vocabulary: DNA, RNA

	essential

	The class of nucleic acid that was used as primary starting material for the following procedures

	RNA

	3 / process (nucleic acid)

	Target substrate quality
 template_quality

	string
 free text

	important

	Description and results of the quality control performed on the template material

	RIN 9.2

	3 / process (nucleic acid)

	Template amount
 template_amount

	string
 free text

	important

	Amount of template that went into the process

	1000 ng

	3 / process (nucleic acid)

	Library generation method
 library_generation_method

	string
 Controlled vocabulary: PCR, RT(RHP)+PCR, RT(oligo-dT)+PCR, RT(oligo-dT)+TS+PCR, RT(oligo-dT)+TS(UMI)+PCR, RT(specific)+PCR, RT(specific)+TS+PCR, RT(specific)+TS(UMI)+PCR, RT(specific+UMI)+PCR, RT(specific+UMI)+TS+PCR, RT(specific)+TS, other

	essential

	Generic type of library generation

	RT(oligo-dT)+TS(UMI)+PCR

	3 / process (nucleic acid)

	Library generation protocol
 library_generation_protocol

	string
 free text

	important

	Description of processes applied to substrate to obtain a library that is ready for sequencing

	cDNA was generated using

	3 / process (nucleic acid)

	Protocol IDs
 library_generation_kit_version

	string
 free text

	important

	When using a library generation protocol from a commercial provider, provide the protocol version number

	v2.1 (2016-09-15)

	3 / process (nucleic acid)

	Complete sequences
 complete_sequences

	string
 Controlled vocabulary: partial, complete, complete+untemplated, mixed

	essential

	To be considered complete, the procedure used for library construction MUST generate sequences that 1) include the first V gene codon that encodes the mature polypeptide chain (i.e. after the leader sequence) and 2) include the last complete codon of the J gene (i.e. 1 bp 5’ of the J->C splice site) and 3) provide sequence information for all positions between 1) and 2). To be considered complete & untemplated, the sections of the sequences defined in points 1) to 3) of the previous sentence MUST be untemplated, i.e. MUST NOT overlap with the primers used in library preparation. mixed should only be used if the procedure used for library construction will likely produce multiple categories of sequences in the given experiment. It SHOULD NOT be used as a replacement of a NULL value.

	partial

	3 / process (nucleic acid)

	Physical linkage of different rearrangements
 physical_linkage

	string
 Controlled vocabulary: none, hetero_head-head, hetero_tail-head, hetero_prelinked

	essential

	In case an experimental setup is used that physically links nucleic acids derived from distinct Rearrangements before library preparation, this field describes the mode of that linkage. All hetero_* terms indicate that in case of paired-read sequencing, the two reads should be expected to map to distinct IG/TR loci. *_head-head refers to techniques that link the 5’ ends of transcripts in a single-cell context. *_tail-head refers to techniques that link the 3’ end of one transcript to the 5’ end of another one in a single-cell context. This term does not provide any information whether a continuous reading-frame between the two is generated. *_prelinked refers to constructs in which the linkage was already present on the DNA level (e.g. scFv).

	hetero_head-head

	3 / process (nucleic acid [pcr])

	Target locus for PCR
 pcr_target_locus

	string
 Controlled vocabulary: IGH, IGI, IGK, IGL, TRA, TRB, TRD, TRG

	important

	Designation of the target locus. Note that this field uses a controlled vocubulary that is meant to provide a generic classification of the locus, not necessarily the correct designation according to a specific nomenclature.

	IGK

	3 / process (nucleic acid [pcr])

	Forward PCR primer target location
 forward_pcr_primer_target_location

	string
 free text

	important

	Position of the most distal nucleotide templated by the forward primer or primer mix

	IGHV, +23

	3 / process (nucleic acid [pcr])

	Reverse PCR primer target location
 reverse_pcr_primer_target_location

	string
 free text

	important

	Position of the most proximal nucleotide templated by the reverse primer or primer mix

	IGHG, +57

	3 / process (sequencing)

	Batch number
 sequencing_run_id

	string
 free text

	important

	ID of sequencing run assigned by the sequencing facility

	160101_M01234

	3 / process (sequencing)

	Total reads passing QC filter
 total_reads_passing_qc_filter

	integer
 positive integer

	important

	Number of usable reads for analysis

	10365118

	3 / process (sequencing)

	Sequencing platform
 sequencing_platform

	string
 free text

	important

	Designation of sequencing instrument used

	Alumina LoSeq 1000

	3 / process (sequencing)

	Sequencing facility
 sequencing_facility

	string
 free text

	important

	Name and address of sequencing facility

	Seqs-R-Us, Vancouver, BC, Canada

	3 / process (sequencing)

	Date of sequencing run
 sequencing_run_date

	string
 free text

	important

	Date of sequencing run

	2016-12-16

	3 / process (sequencing)

	Sequencing kit
 sequencing_kit

	string
 free text

	important

	Name, manufacturer, order and lot numbers of sequencing kit

	FullSeq 600, Alumina, #M123456C0, 789G1HK

	4 / data (raw reads)

	Raw sequencing data file type
 file_type

	string
 Controlled vocabulary: fasta, fastq

	important

	File format for the raw reads or sequences

	

	4 / data (raw reads)

	Raw sequencing data file name
 filename

	string
 free text

	important

	File name for the raw reads or sequences. The first file in paired-read sequencing.

	MS10R-NMonson-C7JR9_S1_R1_001.fastq

	4 / data (raw reads)

	Read direction
 read_direction

	string
 Controlled vocabulary: forward, reverse, mixed

	important

	Read direction for the raw reads or sequences. The first file in paired-read sequencing.

	forward

	4 / process (sequencing)

	Forward read length
 read_length

	integer
 positive integer

	important

	Read length in bases for the first file in paired-read sequencing

	300

	4 / data (raw reads)

	Paired raw sequencing data file name
 paired_filename

	string
 free text

	important

	File name for the second file in paired-read sequencing

	MS10R-NMonson-C7JR9_S1_R2_001.fastq

	4 / data (raw reads)

	Paired read direction
 paired_read_direction

	string
 Controlled vocabulary: forward, reverse, mixed

	important

	Read direction for the second file in paired-read sequencing

	reverse

	4 / process (sequencing)

	Paired read length
 paired_read_length

	integer
 positive integer

	important

	Read length in bases for the second file in paired-read sequencing

	300

	5 / process (computational)

	Software tools and version numbers
 software_versions

	string
 free text

	important

	Version number and / or date, include company pipelines

	IgBLAST 1.6

	5 / process (computational)

	Paired read assembly
 paired_reads_assembly

	string
 free text

	important

	How paired end reads were assembled into a single receptor sequence

	PandaSeq (minimal overlap 50, threshold 0.8)

	5 / process (computational)

	Quality thresholds
 quality_thresholds

	string
 free text

	important

	How sequences were removed from (4) based on base quality scores

	Average Phred score >=20

	5 / process (computational)

	Primer match cutoffs
 primer_match_cutoffs

	string
 free text

	important

	How primers were identified in the sequences, were they removed/masked/etc?

	Hamming distance <= 2

	5 / process (computational)

	Collapsing method
 collapsing_method

	string
 free text

	important

	The method used for combining multiple sequences from (4) into a single sequence in (5)

	MUSCLE 3.8.31

	5 / process (computational)

	Data processing protocols
 data_processing_protocols

	string
 free text

	important

	General description of how QC is performed

	Data was processed using […]

	5 / data (processed sequence)

	V(D)J germline reference database
 germline_database

	string
 free text

	important

	Source of germline V(D)J genes with version number or date accessed.

	ENSEMBL, Homo sapiens build 90, 2017-10-01

MiAIRR-to-NCBI Implementation

	Authors

	Christian E. Busse, Florian Rubelt and Syed Ahmad Chan Bukhari

Table of Contents

	Guide for submission of AIRR-seq data to NCBI

	MiAIRR-to-NCBI Submission Manual
	Scope of this document

	Step 1. MiAIRR data submission to BioProject, BioSample and SRA

	Step 2. Processed MiAIRR data submission to GenBank/TLS

	MiAIRR-to-NCBI Specification
	Outline of INSDC reporting procedure

	Element mapping

	References

	Footnotes

	Appendix

Introduction

The MiAIRR standard

The MiAIRR standard (minimal information about adaptive immune receptor
repertoires) is a minimal reporting standard for experiments using
sequencing-based technologies to study adaptive immune receptors (e.g.
T cell receptors or immunoglobulins). It is developed and maintained by
the Minimal Standards Working Group of the Adaptive Immune Receptors
Repertoire (AIRR) Community [http://airr-community.org] [Breden_2017]. The current version (1.0)
of the standard has been recently published [Rubelt_2017] and was
passed by the general assembly at the annual AIRR Community meeting in
December 2017. MiAIRR requires researchers to report six sets of
information:

	study, subject, diagnosis & intervention

	sample collection

	sample processing and sequencing

	raw sequencing data

	data processing

	processed sequences with a basic analysis results

However, MiAIRR only describes the mandatory data items that have to be
reported, but neither provides details how and where to deposit data nor
specifies data types and formats. Therefore this document aims to
provide both a submission manual for users as well as a detailed data
specification for developers.

Guide for submission of AIRR-seq data to NCBI

This site provides a detailed “how-to” guide for submission of AIRR-seq
data to NCBI repositories (BioProject, BioSample, SRA and GenBank).
For other implementations of the MiAIRR standard see here [https://github.com/airr-community/airr-standards].

One of the primary initiatives of the AIRR (Adaptive Immune Receptor
Repertoire) Community has been to develop a set of metadata standards
for the submission of immune receptor repertoire sequencing datasets.
This work has been carried out by the AIRR Community Standards Working
Group. In order to support reproducibility, standard quality control,
and data deposition in a common repository, the AIRR Community has
agreed to six high-level data sets that will guide the publication,
curation and sharing of AIRR-Seq data and metadata: Study and subject,
sample collection, sample processing and sequencing, raw sequences,
processing of sequence data, and processed AIRR sequences. The detailed
data elements within these sets are defined here
(Download as TSV).
The association between these AIRR sets, the associated data elements,
and each of the NCBI repositories is shown below:

[image: ../_images/MiAIRR_data_elements_NCBI_targets.png]

Submission of AIRR sequencing data and metadata to NCBI’s public data
repositories consists of five sequential steps:

	Submit study information to NCBI BioProject [https://submit.ncbi.nlm.nih.gov/subs/bioproject/] using the NCBI web
interface.

	Submit sample-level information to the NCBI BioSample repository [https://submit.ncbi.nlm.nih.gov/subs/biosample/]
using the AIRR-BioSample templates [https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_BioSample_v1.0.xls].

	Submit raw sequencing data to NCBI SRA [https://submit.ncbi.nlm.nih.gov/subs/sra/] using the AIRR-SRA data
templates [https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_SRA_v1.0.xls].

	Generate a DOI for the protocol describing how raw sequencing data
were processed using Zenodo [https://zenodo.org].

	Submit processed sequencing data with sequence-level annotations to
GenBank [https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/] using AIRR feature tags.

The submission manual provides step-by-step instructions
on carrying out these steps for an AIRR study submission.

MiAIRR-to-NCBI Submission Manual

Scope of this document

Provide a user manual describing the submission of AIRR data using the NCBI
reference implementation described in [Rubelt_2017] [https://doi.org/10.1038/ni.3873]. This implementation uses NCBI’s
BioProject, BioSample, Sequence Read Archive (SRA) and GenBank repositories and
metadata standards to report AIRR data.

Step 1. MiAIRR data submission to BioProject, BioSample and SRA

Since we propose to include a combination of raw and processed sequence data,
the AIRR standard will sometimes need to be distributed and linked across
multiple repositories (e.g., data in SRA linked to related data in GenBank).
Besides, the data elements that comprise the standard will be mapped to
ontologies in BioPortal through NIH CDE (Common Data Element) terms. These
linkages will support more sophisticated validation and logical inference.

There are three main alternatives to submit raw AIRR data/metadata to NCBI
repositories: (1) CEDAR’s CAIRR pipeline; (2) NCBI’s Web interface; and (3)
NCBI’s FTP server. These alternatives are described below:

Option 1. Submission via the CEDAR system (CAIRR submission pipeline)

CEDAR’s CAIRR submission pipeline helps investigators and curators to edit and
validate ontology-controlled metadata. This pipeline provides a seamless
interface to transmit SRA datasets to the NCBI SRA and BioSample repositories
from the CEDAR Workbench [https://cedar.metadatacenter.org]. The pipeline
can be directly be accessed at http://cairr.airr-community.org [https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933].
Note that the CEDAR template and template elements used by this pipeline are
publicly available in the following CEDAR folder: All/Shared/Shared by
CEDAR/MiAIRR [https://cedar.metadatacenter.org/dashboard?folderId=https:%2F%2Frepo.metadatacenter.org%2Ffolders%2F4e5ce935-03ea-401a-804c-c38160c560f2].

Submission steps:

	Open CEDAR’s MiAIRR template by clicking on http://cairr.airr-community.org [https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933]. If you are not already logged in, this will take you to the CEDAR login panel. If you are a new user, you will have to create an account on the CEDAR Workbench by clicking here [https://auth.metadatacenter.org/auth/realms/CEDAR/login-actions/registration?client_id=cedar-angular-app].

[image: ../_images/CAIRR_login.png]

	After logging in into the system, you will see the ‘MiAIRR’ template. Fill out the template fields with your metadata. Fields with an asterisk (*) are mandatory. Your submission will fail if any mandatory fields are not completed. If information is unavailable for any mandatory field, please enter ‘not collected’, ‘not applicable’ or ‘missing’ as appropriate. Note that you will need to enter a BioProject ID into the field ‘Study ID’. If you do not have a BioProject yet, you can create one at https://submit.ncbi.nlm.nih.gov/subs/bioproject/

[image: ../_images/CAIRR_metadata_1.png]

	Once your metadata is complete, click on the ‘Save’ button to save your metadata into your workspace. You will see a message in a green box confirming that your metadata have been successfully saved, as well as a message in a yellow box letting you know that your metadata have been saved to your personal workspace.

[image: ../_images/CAIRR_metadata_2.png]

	Go to your personal workspace by clicking on the left arrow (top left corner) and then on the ‘Workspace’ link, or by just clicking on: https://cedar.metadatacenter.org

	Once in your workspace, you will see a metadata file called ‘MiAIRR metadata’. That file contains the metadata that you have just created and that you want to submit to the NCBI. Click on the three vertical dots on the top-right corner of the file icon to see the available file options.

[image: ../_images/CAIRR_workspace.png]

	Click on the ‘Submit’ option to open the submission dialog.

[image: ../_images/CAIRR_submit_1.png]

	The ‘NCBI MiAIRR’ option will be automatically selected. Click on ‘Next’ to go to the next step.

[image: ../_images/CAIRR_submit_2.png]

	Click on the ‘Select Files’ button to upload the data files. Note that the names of the selected files must match the names in the metadata file. Otherwise, you will receive an error message when trying to start the submission.

[image: ../_images/CAIRR_submit_3.png]

	Click on the ‘Submit’ button to start the submission. If there are not validation errors, the selected data files and the corresponding metadata will be uploaded to the NCBI servers.

[image: ../_images/CAIRR_submit_4.png]

	Note that the submission may take several hours or even days to be processed by the NCBI. Meanwhile, you will receive status messages about your submission in your workspace (messages icon).

[image: ../_images/CAIRR_messages.png]

	Proceed with deposit of processed data, below.

Citing the CAIRR pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L.
Egyedi, Debra Debra Willrett, John Graybeal, Mark A. Musen, Florian Rubelt, Kei
H. Cheung, and Steven H. Kleinstein. The CAIRR pipeline for submitting
standards-compliant B and T cell receptor repertoire sequencing studies to the
NCBI [https://www.ncbi.nlm.nih.gov/pubmed/30166985]. Frontiers in Immunology
9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877

Tell Us About It

Please let us know how it went! If you are willing, we would love to have your
comments in a short survey [https://www.surveymonkey.com/r/your-metadata-experience], it should just
take 5 minutes or so. We also welcome entry of issues and requests in our
GitHub repository [https://github.com/metadatacenter/cedar-project/issues],
and emails can be sent to cedar-users@lists.stanford.edu. Both of these
resources are publicly visible.

Support or Contact

Having trouble with NCBI submission process through our pipeline? Please email
to Syed Ahmad Chan Bukhari or to Marcos
Martínez-Romero and we will help you sort it
out.

Option 2. Submission via NCBI’s web interface

To facilitate AIRR data submissions to NCBI repositories, we have developed the
NCBI-compliant metadata submission templates both for single and bulk AIRR data
submissions. NCBI provides a web-based interface to create a BioProject and
allows to BioSample, Sequence Read Archive (SRA) and GenBank metadata via
tab-delimited files for single BioProject related data files submission.

Submitting AIRR data and associated metadata to the Bioproject, BioSample and
SRA repositories via NCBI’s web interface follows in general the submission
procedure described in [NCBI_NBK47528] [https://www.ncbi.nlm.nih.gov/books/NBK47528/], but uses AIRR-specific
template for metadata submission:

	Go to https://submit.ncbi.nlm.nih.gov/subs/sra/ and login with your NCBI account (create an account if necessary).

	Click on “create new submission”. You will see a form as below. Fill the form with required information and click on “continue”.

[image: ../_images/bioproject.png]

	If you are submitting for the first time, check “Yes” on the “new BioProject” or “new BioSample” options to create a new project or sample, respectively.

[image: ../_images/sradisplay.png]

	Fill in the project information. Add as much relevant information you can add in description. It will help later in searching the particular submission.

[image: ../_images/fillproject.png]

	The AIRR BioSample template is not yet listed on the NCBI website. The template sheet AIRR_BioSample_V1.0.xls can be downloaded from https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS. Fill in the required field and save the file as tab-delimited text file (.TSV format), then upload it.

	To submit the SRA metadata use the AIRR_SRA_v1.0.xls file. Make sure that the column sample_name uses sample names that match the record in the BioSample template (if new BioSamples are being submitted) or a previously entered record. Also this file must be saved as tab-delimited text file for upload.

	Submit the raw sequence file.

	Complete the submission.

	Proceed with deposit of processed data, below.

Option 3. Submission via NCBI’s FTP server, using a predefined XML template

In addition to the web interface, NCBI provides an FTP-based solution to submit
bulk metadata. The corresponding AIRR XML templates can be found under
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS.
Otherwise users should refer to the current SRA file upload manual
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/. Users planning to
frequently submit AIRR-seq data to SRA using scripts to generate the XML files
MUST ensure that the templates are identical to the current upstream version on
Github.

Step 2. Processed MiAIRR data submission to GenBank/TLS

Processed sequence data will be submitted to the “Targeted Locus Study” (TLS)
section of GenBank. The details of this submission process are currently still
being finalized. Basically the procedure is identical to a conventional GenBank
submission with the exception of additional keywords marking it as TLS
submission.

Non-productive records should be removed before the data submission or use an
alternative annotation as described in the specification document.

	Generating MiAIRR compliant GenBank/TLS submissions: https://changeo.readthedocs.io/en/stable/examples/genbank.html

GenBank provides multiple tools (GUI and command-line) to submit data:

	BankIt, a web-based submission tool with wizards to guide the submission process

	Sequin, NCBI’s stand-alone submission tool with wizards to guide the submission process is available by FTP for use on for Windows, macOS and Unix platforms.

	Tbl2asn is the recommended tool for the bulk data submission. It is a command-line program that automates the creation of sequence records files (.sqn) for submission to GenBank, driven by multiple tabular unput data files. Documentation and download options can be found under https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/.

MiAIRR-to-NCBI Specification

Outline of INSDC reporting procedure

TODO: Outline the reporting procedure for data sets 1-4

In terms of standard compliance it is currently REQUIRED 1 to
deposit information for MiAIRR data sets 5 and 6 in general-purpose
sequence repositories for which an AIRR-accepted specification on
information mapping MUST exist. However, users should note that in the
future additional AIRR-sanctioned mechanisms for data deposition will
become available as specified by the AIRR Common Repository Working
Group. The mapping of data items in MiAIRR data sets 5 and 6 differs
substantially in size and structure and therefore requires distinct
reporting procedures:

	Set 5: This is free text information describing the work flow,
tools and parameters of the sequence read processing. It is
REQUIRED that this information is deposited as a freely available
document, permanently linked via a DOI. Note that is currently
neither a specific format for this document nor a recommended
service provider for obtaining the DOI.

	Set 6: This is specified to contain the consensus sequence and the
following information obtained from the initial analysis: V, D and
J segment, C region and IMGT-JUNCTION 2 [LIGMDB_V12]. These will
be deposited in a general-purpose INSDC repository, using the record
structure described below.

INSDC records were originally designed to hold individual Sanger
sequences. Therefore each record will contain a header with information
largely identical between all records in an AIRR sequencing study.
Records can be concatenated for uploading.

The INSDC feature table (FT) [INSDC_FT] is a sequence annotation
standard used within the INSDC records and assigns information to
specified positions on the reported sequence string. In regard to the
correct location of the provided annotation, it should especially be
noted that some V(D)J inference tools will return coordinates referring
to the reference instead of the query sequence. As the sequence
submitted in a record MUST be identical to the query sequence, the
positions provided by the V(D)J inference tool MUST, if necessary, be
translated back onto the query sequence. In case the start and/or end
of a feature cannot be reliably determined or is not present in the
reported sequence 3, open intervals CAN be used for reporting.
However, open intervals MUST NOT be used to deliberately obfuscate
known positions.

In addition to the required information specified in Table_1, users
CAN use all valid FT keys/qualifiers to provide further annotation for
the reported sequences. However, a record MUST still be compliant with
this specification, if such OPTIONAL information would be removed,
meaning that it is FORBIDDEN to move REQUIRED information into OPTIONAL
keys/qualifiers. In addition, users MUST NOT use keys/qualifiers that
could create ambiguity with the keys/qualifiers specified here.

	element

	FT key

	FT qualifier

	FT value

	REQUIRED (if used by original study)

	V segment

	V_segment

	/gene

	see [Feature table]

	yes

	D segment

	D_segment

	/gene

	see [Feature table]

	yes; if IGH, TRB or TRD sequence

	J segment

	J_segment

	/gene

	see [Feature table]

	yes

	C region

	C_region

	/gene

	see [Feature table]

	yes

	JUNCTION

	CDS

	/function

	“JUNCTION”

	yes

Table 1: Summary of the mapping of mandatory AIRR MiniStd data set 6
elements to the INSDC feature table (FT). Note that the overall record
will contain additional information, such as cross-references linking
the deposited sequence reads and metadata.

Element mapping

The broad strategy of element mapping to the various repositories is
depicted in Table_2.

	MiAIRR data set / subset

	target repository

	1 / study

	BioProject

	1 / subject

	1 / diagnosis & treatment

	2 / sample

	BioSample

	3 / processing (cells)

	3 / processing (nucleic acids)

	SRA

	4 / raw sequences

	5 / processing (data)

	user-defined DOI

	6 / Processed sequences & annotations

	Genbank

Table 2: Summary of the mapping of MiAIRR data sets to the various
repositories

Mapping of data sets 1-4 to BioProject/BioSample/SRA

TODO: Include item-by-item mapping [NCBI_NBK47528]

Mapping of data set 5 to a user-defined repository

While several mandatory item have been defined in this data set, there
is currently no mapping as the reporting procedure is implemented as a
free text document. AIRR RECOMMENDS to use Zenodo [https://zenodo.org] for deposition of
these documents, as it is hosted by CERN and supports versioned DOIs
(termed “concept” DOI). Users SHOULD use the existing AIRR tag [https://zenodo.org/communities/airr]
when submitting documents to increase the visiblity of their study.

Mapping of data set 6 to INSDC

Users should note that while the FT is standardized, the overall
sequence record structure diverges between the three INSDC
repositories. The following section refers to items at or above the
hierarchy level of the FT using the GenBank specification [GENBANK_FF],
the corresponding designations of ENA [ENA_MANUAL] are provided in
parenthesis 11.

Record header

The header MUST contain all of the following elements:

	REQUIRED: header structure as specified by the respective INSDC
repository [ENA_MANUAL] [GENBANK_FF] [GENBANK_SR].

	FORBIDDEN: The DEFINITION entry will be autopopulated by
information provided in the FT part (misc_feature, /note).

	REQUIRED: identifier of the associated SRA record (MiAIRR data
set 4) as DBLINK (ENA: DR line). Note that it is not
possible to refer to individual raw reads, only the full SRA
collections can be linked.

	REQUIRED: in the KEYWORDS field (ENA: KW line):

	the term “TLS”

	the term “Targeted Locus Study”

	the term “AIRR”

	the term “MiAIRR:<x>.<y>” with <x> and <y> indicating the used
version and subversion of the MiAIRR standard.

	REQUIRED: DOI of the associated free-text record containing the
information on data processing (MiAIRR data set 5) as REMARK
within a REFERENCE 4 (ENA: RX line).

	OPTIONAL: The use of structured comments [https://www.ncbi.nlm.nih.gov/genbank/structuredcomment/] is currently evalutated
for use in future versions of the MiAIRR standard.

Feature table

The feature table, indicated by FEATURES (ENA: RX line), MUST or
SHOULD contain the following keys/qualifiers:

General sequence information

	REQUIRED: key source containing the following qualifiers:

	REQUIRED: qualifier /organism (required by [INSDC_FT]).

	REQUIRED: qualifier /mol_type (required by [INSDC_FT]).

	REQUIRED: qualifier /citation pointing to the reference in the
header (REFERENCE, ENA: RN line) that links to the data
set 5 document.

	REQUIRED: qualifier /rearranged 5.

	REQUIRED: qualifier /note containing the AIRR_READ_COUNT
keyword to indicate the read number used for the consensus. The
criteria for selecting these reads and the procedure used to
build the consensus SHOULD be reported as part of data set 5.

	OPTIONAL: qualifier /note containing the AIRR_INDEX_CELL
keyword for single-cell experiments. The value of the keyword
SHOULD only contain alpha-numeric characters and MUST be
identical for sequences derived from the same cell of origin.

	RECOMMENDED: qualifiers /assembly_gap and
/linkage_evidence to annotate non-overlapping paired-end
sequences.

	RECOMMENDED: qualifier /strain, if /organism is “Mus
musculus”.

Note that additional qualifiers might be REQUIRED by GenBank to
harmonize the GenBank record with the BioSample referenced by it in the
header. A list of known BioSample keyword and GenBank qualifiers that
MUST contain the same information can be found below. Whether (and in
which direction) the existence of a keyword/qualifiers triggers
a requirement in the corresponding record is currently unknown. Please
report any undocumented requirements surfacing during submission to the
MiAIRR team.

	BioSample keyword

	GenBank FT qualifier

	cell type

	/cell_type

	isolate

	/isolate

	sex

	/sex

	tissue

	/tissue_type

Segment and region annotation

The following keys MUST be used for annotation according to their FT
definition, if the respective item has been reported by the original
study:

	REQUIRED: key V_region. Note that this key MUST NOT be used to
annotate V segment leader sequence 6 7.

	REQUIRED: key misc_feature with coordinates identical to those
given in V_region. This key MUST contain a /note qualifier
that contains a string as value, which describes the general type of
variable region described by the record. The string MUST match the
regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain variable region$/

This string will be used as record heading upon import into Genbank.
Note that while this behavior of Genbank is undocumented, the
procedure has been approved by NCBI.

	REQUIRED: key V_segment, both coordinates MUST be within
V_region. Note that this key MUST NOT be used to annotate
V segment leader sequence 6 7.

	REQUIRED: key D_segment, both coordinates MUST be within
V_region. This key is only REQUIRED for sequences of applicable
loci (IGH, TRB, TRD 8). In the rare case of rearrangements
using two D segments, this key SHOULD occur twice, but the
coordinates of both keys MUST NOT overlap.

	REQUIRED: key J_segment, both coordinates MUST be within
V_region.

	REQUIRED: key C_region, both coordinates MUST NOT overlap with
V_region. If the region can be unambiguously identified, the
respective official gene symbol MUST be reported using the /gene
qualifier. If only the isotype (e.g. IgG) but not the subclass
(e.g. IgG1) can be identified, a truncated gene symbol (e.g. IGHG
instead of IGHG1) SHOULD be reported instead 9.

Each [VDJ]_segment key MUST or SHOULD contain the following
qualifiers:

	REQUIRED: qualifier /gene, containing the designation of the
inferred segment, according to the database in the first
/db_xref entry. This qualifier MUST NOT contain any allele
information.

	RECOMMENDED: qualifier /allele, containing the designation of
the inferred allele, according to the database in the first
/db_xref entry. Note that while INSDC does not specify any
format for this qualifier, AIRR compliance REQUIRES that this field
only contains the allele string, i.e. without the gene name or
separator characters.

	REQUIRED: qualifier /db_xref, linking to the reference record of
the inferred segment in a germline database [INSDC_XREF]. This
qualifier can be present multiple times, however only the first
entry is mandatory and MUST link to the database used for the
segment designation given with /gene and (if present)
/allele.

Note on referencing IMGT databases: There are two IMGT database
available in the controlled vocabulary [INSDC_XREF]:

	IMGT/GENE-DB: This is the genome database, which requires
that a reference sequence has been mapped to genomic DNA. When
using this database as reference, note that you can only refer to
the gene symbol not the allele. In the case of ambiguous
allele calls (see below) this means that you MUST NOT annotate any
/allele at all. Nevertheless, this SHOULD be the default
database for applications using IMGT as reference, as the sequence
for each gene/allele is unique.

	IMGT/LIGM: This database collects sequences described in
INSDC databases (GenBank/ENA/DDBJ). As it might contain multiple
entries representing a given gene/allele, it is NOT RECOMMENDED
to use it unless that inference gene/allele is only present in
IMGT/LIGM and not in IMGT/GENE-DB.

	RECOMMENDED: /inference to indicate the tool used for segment
inference. The description string SHOULD use COORDINATES as
category and aligment as type [INSDC_FT].

Annotation of sequences producing multiple hits with identical scores
is problematic and is ultimately at the discretion of the depositing
researcher. However, the algorithms used for tie-breaking SHOULD be
documented in data set 5. In addition, the following procedures MUST be
followed:

	Certain gene, ambiguous allele: If multiple alleles of the same gene
match to the sequence, the /allele qualifier MUST NOT be used.
As the REQUIRED /db_xref qualifier will ofter refer to a
specific allele, all equal hits SHOULD be annoted via this qualifier
(which can be use multiple times). Also see the note on the
limitations of the IMGT/GENE-DB reference database above.

	Ambiguous gene: Pick one, annotate using the qualifiers as noted for
ambiguous allele.

JUNCTION annotation

INSDC does currently not define a key to annotate JUNCTION 10.
Therefore the following procedure MUST be used:

	REQUIRED: key CDS, indicating the positions of

	the first bp of the first AA of JUNCTION

	the last bp of the last AA of JUNCTION as determined by the
utilized V(D)J inference tool.

Open coordinates MUST be used for both coordinates to allow for
automated creation of the /translated qualifier providing the
peptide sequence. Further note that a non-productive JUNCTION can
have a length not divisible by three. This key contains the
following qualifiers:

	REQUIRED: qualifier /codon_start with the assigned value “1”.

	REQUIRED: qualifier /function with the assigned value
“JUNCTION”.

	REQUIRED: qualifier /product with an assigned value matching
the regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain junction region$/

The variable region referred to in the string MUST be the same
as the one given in the misc_feature key.

	RECOMMENDED: qualifier /inference, indicating the tool used
for positional inference. The description string SHOULD use
COORDINATES as category and protein motif as type
[INSDC_FT].

	FORBIDDEN: qualifier /translated, which will be automatically
added by Genbank.

Note that the complete CDS key will be removed by Genbank if the
translation contains stop codons or to many “N” (exact number
unknown). As such a record will lack a central piece of REQUIRED
information it is RECOMMENDED that submitters either

	remove the complete record or

	replace the CDS with a misc_feature key while at the same
time removing the /codon_start and /product qualifiers

upfront, as described in the submission manual. If the submitter
chooses the replacement option, it has to be ensured that the
annotated coordinates are actually valid and not affect by the frame-
shift.

Record body

The record body starts after ORIGIN (ENA: SQ line) and MUST
contain:

	the consensus sequence

References

	LIGMDB_V12

	IMGT-ONTOLOGY definitions.
<http://www.imgt.org/ligmdb/label#JUNCTION>

	INSDC_FT(1,2,3,4,5)

	The DDBJ/ENA/GenBank Feature Table Definition.
<http://www.insdc.org/documents/feature-table>

	ENA_MANUAL(1,2)

	European Nucleotide Archive Annotated/Assembled
Sequences User Manual.
<http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt>

	GENBANK_FF(1,2)

	GenBank Flat File Format.
<https://ftp.ncbi.nih.gov/genbank/gbrel.txt>

	GENBANK_SR

	GenBank Sample Record.
<https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html>

	INSDC_XREF(1,2)

	Controlled vocabulary for /db_xref qualifier.
<http://www.insdc.org/documents/dbxref-qualifier-vocabulary>

	NCBI_NBK47528

	SRA Handbook.
<https://www.ncbi.nlm.nih.gov/books/NBK47528/>

Footnotes

	1

	See the “Glossary” section on how to interpret term written in
all-caps.

	2

	Note that according to IMGT definition this is a superset of the
CDR3.

	3

	This can occur e.g. in paired-end sequencing of head-to-head
concatenated transcripts, where the 5’ end of the V segment is
present in the amplicon, but cannot be precisely determined.

	4

	The current GenBank record specification does not include a
separate key for DOIs.

	5

	Although FT does specify a /germline qualifier for
non-rearranged sequences it has not been included in this
specification as there is no obvious use case for it. In addition,
non-rearranged transcripts would lack a number of other features
that are assumed to be present, first of all the JUNCTION.

	6(1,2)

	The FT explicitly states that V_segment does not cover
the leader sequence. The definition of V_region is slightly more
ambiguous, however in combination with the V_segment definition,
it becomes clear that the leader is also not considered to be a part
of V_region. Therefore the leader sequence should be implicitly
annotated as the region between the start of CDS and the start of
V_region.

	7(1,2)

	Previously the leader was implicitly annotated as the region
between CDS start and V_region start. As it was decided to drop
the “global” CDS to make it easier to accommodate for INDELs, this
is currently not an option anymore.

	8

	For simplicity, this document only uses human gene symbols. For
non-human species the specification pertains to the respective
orthologs.

	9

	This approach has been approved by NCBI.

	10

	NCBI confirmed that once there would be enough datasets using
the JUNCTION tag as specified here, a motion for an
INSDC-sanctioned key could be initiated.

	11

	Note that there is currently no submission specification for
ENA. This information is provided for reference only and will be
moved to a separate document in the future.

Appendix

Example record (GenBank format)

LOCUS AB123456 420 bp mRNA linear EST 01-JAN-2015
DEFINITION TLS: Mus musculus immunoglobulin heavy chain variable region,
 sequence.
ACCESSION AB123456
VERSION AB123456.7
KEYWORDS TLS; Targeted Locus Study; AIRR; MiAIRR:1.0.
SOURCE Mus musculus
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires;
 Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 420)
 AUTHORS Stibbons,P.
 TITLE Section 5 information for experiment FOO1
 JOURNAL published (01-JAN-2000) on Zenodo
 REMARK DOI:10.1000/0000-12345678
REFERENCE 2 (bases 1 to 420)
 AUTHORS Stibbons,P.
 TITLE Direct Submission
 JOURNAL Submitted (01-JAN-2000) Center for Transcendental Immunology,
 Unseen University, Ankh-Morpork, 12345, DISCWORLD
DBLINK BioProject: PRJNA000001
 BioSample: SAMN000001
 Sequence Read Archive: SRR0000001
FEATURES Location/Qualifiers
 source 1..420
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="C57BL/6J"
 /citation=[1]
 /rearranged
 /note="AIRR_READ_COUNT:123”
 V_region 1..324
 misc_feature 1..324
 /note="immunoglobulin heavy chain variable region"
 V_segment 1..257
 /gene="IGHV1-34"
 /allele="01"
 /db_xref="IMGT/LIGM:AC073565"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 D_segment 266..272
 /gene="IGHD2-2"
 /allele="01"
 /db_xref="IMGT/LIGM:AJ851868"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 J_segment 291..324
 /gene="IGHJ4"
 /allele="01"
 /db_xref="IMGT/LIGM:V00770"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 CDS <258..>290
 /codon_start=1
 /function="JUNCTION"
 /product="immunoglobulin heavy chain junction region"
 /inference="COORDINATES:protein motif:IgBLAST:1.6"
 /translated="CARAGVYDGYTMDYW"
 C_region 325..420
 /gene="Ighg2c"
ORIGIN
 1 agcctggggc ttcagtgaag atgtcctgca aggcttctgg ctacacattc actgactata
 61 acatacactg ggtgaagcag agccatggaa agagccttga gtggattgca tatattaatc
 121 ctaacaatgg tggttatggc tataacgaca agttcaggga caaggccaca ttgactgtcg
 181 acaggtcatc caacacagcc tacatggggc tccgcagcct gacctctgag gactctgcag
 241 tctattactg tgcaagagcg ggagtttacg acggatatac tatggactac tggggtcaag
 301 gaacctcagt caccgtctcc tcagccaaaa caacagcccc atcggtctat ccactggccc
 361 ctgtgtgtgg aggtacaact ggctcctcgg tgactctagg atgcctggtc aagggcaact
//

Glossary

	MUST / REQUIRED: Indicates that an element or action is necessary to
conform to the standard.

	SHOULD / RECOMMENDED: Indicates that an element or action is
considered to be best practice by AIRR, but not necessary to conform
to the standard.

	CAN / OPTIONAL: Indicates that it is at the discretion of the user
to use an element or perform an action.

	MUST NOT / FORBIDDEN: Indicates that an element or action will be in
conflict with the standard.

Abbreviations

	AA: amino acid

	bp: base pair

	DOI: digital object identifier

	FT: INSDC Feature Table

	INSDC: International Nucleotide Sequence Database Collaboration

	SRA: sequence read archive

Requirement Levels of AIRR Schema Fields

Clarification of Terms

	The terms “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY” and “OPTIONAL” are to be interpreted as
described in [RFC2119].

	The terms “IF” and “ONLY IF” are are to be interpreted as sufficent
and necessary requirement, respectively.

	The term “NULL-LIKE” is an extension of the NULL term in SQL and
its equivalents in other programming languages, referring to the
absence of data in a field (i.e., the field is empty). NULL-LIKE
additionally includes the following terms, which also define the
reason why the information is missing. As these terms are expected to
be provided as text, the field would not be NULL but nevertheless
NULL-LIKE (i.e., it lacks biologically interpretable information).

	not_applicable: There is no meaningful value for this field
due to study design (e.g., sex for a phage library).

	not_collected: Data for this field was not collected during
the study.

	missing: Data for field was collected, but is not available
now.

Categories of AIRR Schema Fields

	Fields MUST be indicated by the x-airr:miairr property IF and
ONLY IF the field or its content is governed by the MiAIRR data
standard [Rubelt_2017].

	The x-airr:miairr property MUST be assigned to one of the
following three requirement levels:

	essential: Information on this field MUST be provided and is
considered critical for the meaningful interpretation of the data.
Therefore the value of such a field MUST NOT be NULL-LIKE. Due to
this strict requirement, this level is only assigned to a small
set of fields. Importantly, fields are not elevated to this
level based on the fact that the respective information should
typically be available to the data generator. This was decided to
simplify MiAIRR-compliant data annotation by third parties, who
might perform this task based on publicly available information
only.

	important: Information for this field MUST be provided.
However, the field MAY be assigned a NULL-LIKE value if the
respective information is not available. The majority of fields
governed by the MiAIRR data standard are assigned to this level.

	defined: Information for this field MAY be provided. However,
IF information matching the semantic definition of the field is
provided, this field MUST be used for reporting.

Compliance with the MiAIRR Data Standard

	Compliance to the MiAIRR Data Standard is currently a binary state,
i.e., a data either is or is not compliant, there are not “grades”
of compliance. However, additional requirements for specific use
cases might be defined in the future.

	Data sets are considered MiAIRR-compliant ONLY IF all essential
and important fields are reported.

	Note that important fields with NULL-LIKE values MUST NOT be
dropped from a data set.

	Implementors of data entry interfaces SHOULD NOT set the default
value of important fields to NULL-LIKE values, i.e., users should
be required to actively select the values.

Metadata Annotation Guidelines

Purpose of this Document

This document describes the RECOMMENDED ways to provide metadata
annotation for various experimental setups.

Clarification of Terms

	The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in [RFC2119].

Individual fields

library_generation_method

The library_generation_method describes how the nucleic acid
annotated in template_class that encodes the V(D)J-rearrangement
it reverse-transcribed, amplified and/or otherwise prepared for further
processing. Typically this procedure will precede further NGS platform-
specific steps, however these procedures MAY be combined. The field
uses a controlled vocabulary, the individual values are described below:

	template_class

	library_generation_method

	Methodology

	DNA

	PCR

	Conventional PCR on genomic DNA
of a vertebrate host (requires:
synthetic == false)

	Conventional PCR on DNA of a
synthetic library (requires:
synthetic == true)

	RNA

	RT(RHP)+PCR

	RT-PCR using random hexamer
primers

	RT(oligo-dT)+PCR

	RT-PCR using oligo-dT primers

	RT(oligo-dT)+TS+PCR

	5’-RACE PCR (i.e. RT is followed
by a template switch (TS) step)
using oligo-dT primers

	RT(oligo-dT)+TS(UMI)+PCR

	5’-RACE PCR using oligo-dT
primers and template switch
primers containing unique
molecular identifiers (UMI),
i.e., the 5’ end is UMI-coded

	RT(specific)+PCR

	RT-PCR using transcript-specific
primers

	RT(specific)+TS+PCR

	5’-RACE PCR using transcript-
specific primers

	RT(specific)+TS(UMI)+PCR

	5’-RACE PCR using transcript-
specific primers and template
switch primers containing UMIs

	RT(specific+UMI)+PCR

	RT-PCR using transcript-specific
primers containing UMIs (i.e.,
the 3’ end is UMI-coded)

	RT(specific+UMI)+TS+PCR

	5’-RACE PCR using transcript-
specific primers containing UMIs
(i.e., the 3’ end is UMI-coded)

	RT(specific)+TS

	RT-based generation of dsDNA
without subsequent PCR. This
is used by RNA-seq kits.

	any

	other

	Any methodology not covered
above

Specific Use Cases and Experimental Setups

Synthetic libraries

In synthetic libraries (e.g. phage or yeast display), particles present
genetically engineered constructs (e.g. scFv fusion receptors) on their
surface. As this deviates substantially from other workflows, the
following annotation SHOULD/MUST be used:

	In general, Subject should be interpreted as the initial library
that undergoes a mutation/selection procedure.

	synthetic: MUST be set to true

	species: It is assumed that every synthetic library is derived
from V and J genes that exist in some vertebrate species. This field
SHOULD encode this species. Importantly, it MUST NOT encode the
phage vector, the bacterial host or the comparable biological
component of the library system that constitutes the presenting
particle.

	sample_type: SHOULD be NULL.

	single_cell: Only true if individual particles are isolated and
sequenced. Note that colonies or plaques, even if containing
genetically identical particles, per se do not match this
definition and therefore MUST be annotated as false.

	cell_storage: SHOULD be used for non-cellular particles
analogously.

	physical_linkage: For scFv constructs the hetero_prelinkeded
term MUST be used. VHH (i.e. camelid) libraries SHOULD annotate
none as there is only a single rearrangement envolved.

AIRR Data Representations

AIRR Data Representations are versioned specifications that consist of
a file format and a well-defined schema. The schema is provided in a
machine-readable YAML document that follows the OpenAPI v2.0
specification. The schema defines the data model, field names, data
types, and encodings for AIRR standard objects. Strict typing enables
interoperability and data sharing between different AIRR-seq analysis
tools and repositories, and some fields use a controlled vocabulary or
an ontology for value restriction. Specification extensions are
utilized to define AIRR-specific attributes.

FAIR Principles

We desire AIRR standard objects to be FAIR (findable, accessible,
interoperable and reusable) [Wilkinson_2016]:

	findable: by giving AIRR standard objects a globally unique identifier

	accessible: by providing an API where AIRR standard objects can be queried and downloaded

	interoperable: by defining a OpenAPI schema for the AIRR standard objects

	reusable: by linking the AIRR standard objects together into a standard formats

AIRR Data Model

The MiAIRR standard defines the minimal information for submission and
publication of AIRR-seq datasets. The standard defines a set of data
elements for this information and organizes them into six high-level
sets.

	Study, Subject and Diagnosis

	Sample Collection

	Sample Processing and Sequencing

	Raw Sequences

	Data Processing

	Processed Sequences with Annotations

However beyond these sets, MiAIRR does not define any structure, data
model or relationship between the data elements. This provides
flexibility for the information to be stored in various database
repositories but is problematic for interoperability and reusability
of that information by computer programs. The AIRR Data Model
overcomes these issues by defining a schema for the MiAIRR data
elements, structuring them within schema objects, defining the
relationship between those objects, and defining a file format.

Here are the primary schema objects of the AIRR Data Model:

	Schema Object

	Description

	Study

	Information about the experimental study design, including the title of the study, laboratory contact information, funding, and linked publications.

	Subject

	Information about the study cohorts and individual subjects, including species, sex, age, and ancestry.

	Diagnosis

	Information about disease state(s), therapies, and study group membership (e.g., control versus disease).

	Sample

	Information about the origin and expected composition of the biological sample(s). This set aims to capture essential information about the collection of a sample, including its source (e.g., anatomical site), its provenance (provider), and the experimental condition (e.g., the time point during the course of a disease or treatment).

	CellProcessing

	Information about the cell subset being profiled, as defined by the investigator, and the flow cytometry or other markers used to select the subset. Additional information includes the number of cells per sample and whether cells were prepared in bulk or captured as single cells.

	NucleicAcidProcessing

	Information about nucleic acid sample type (e.g., RNA versus DNA) and how immune-receptor gene rearrangements were amplified and sequenced (for example, RACE-PCR versus multiplex PCR, paired PCR, and/or varying read length and sequencing chemistries).

	SequencingRun

	Information about the sequencing run, such as the number of reads, read lengths, quality control parameters, the sequencing kit and instrument(s) used, and run batch number. Also includes information about the raw data for the sequencing run (e.g., FASTQ files).

	DataProcessing

	Information about the data processing to transform the raw sequencing data into Rearrangements.

	Repertoire

	Composite object that combines the schema objects Study, Subject, Diagnosis, Sample, CellProcessing, NucleicAcidProcessing, SequencingRun, and DataProcessing. Each Repertoire has a unique identifier repertoire_id for linking with other data files, e.g. Rearrangements. Repertoires have their own schema and file format described here.

	Rearrangments

	Annotated sequences describing adaptive immune receptor chains. Rearrangements have their own schema and file format described here.

Relationship between Schema Objects

The MiAIRR categories are hierarchical, and includes information about
the study, the subjects, the collected samples and how they are
processed, details of the sequencing protocol, and information about
the data analysis. The top-down relationships are either 1-to-n
indicating the top level object can be related to any number of
sub-level objects, or n-to-n indicating any number of top level object
can be related to any number of sub-level objects. Lastly, 1-to-1
indicates the top level object is related to a single sub-level
object.

	Study 1-to-n with Subject. A study may contain any number of subjects.

	Subject 1-to-n with Diagnosis. Each subject may contain any number of diagnoses.

	Subject 1-to-n with Sample. Each subject may contain any number of samples.

	Sample 1-to-n with CellProcessing. A sample may have any number of cell processing records.

	CellProcessing 1-to-n with NucleicAcidProcessing. A cell processing record may have any number of nucleic acid processing records.

	NucleicAcidProcessing 1-to-n with SequencingRun. A nucleic acid processing records may have any number of sequencing runs.

	SequencingRun n-to-n with DataProcessing. Multiple sequencing runs can be combined in a data processing, and multiple data processing can be done on a sequencing run.

However, this hierarchy is deep and complicated. Therefore to simplify
the processing of this information, we denormalized the hierarchy
around the conceptual Repertoire object. This denormalization
represents many relationships as 1-to-1 which simplifies the
structure. A single Repertoire has these relationships with the
primary schema objects.

	Repertoire 1-to-1 with Study. A repertoire is for a single study, though a study may have multiple repertoires.

	Repertoire 1-to-1 with Subject. A repertoire is for a single subject, though a subject may have other repertoires defined.

	Sample 1-to-1 with CellProcessing, NucleicAcidProcessing, and SequencingRun. A sample is associated with a single chain of sample processing from initial collection, through cell and nucleic acid processing, to sequencing.

	Repertoire 1-to-n with Sample. Generally a repertoire has a single sample, but sometimes studies perform technical replicates or re-sequencing to generate additional data, and these studies will have multiple samples, which are to be combined and analyzed together as part of the same repertoire.

	Repertoire 1-to-n with DataProcessing. A repertoire can be analyzed multiple times. More details about multiple data processing is provided below.

The trade-off with denormalization of the hierarchy is that it causes
duplication of data. For example, two repertoires for the same study
will have the Study information duplicated within each of the two
repertoire records; likewise multiple repertoires for the same subject
will have the Subject information duplicated.

While the denormalized Repertoire simplifies read-only access to
the MiAIRR information, it complicates data entry and write access to
the information because updates need to be propagated to all of the
duplicate records. Therefore, Repertoire was designed to be easily
transformed into a normalized form, representing the full hierarchy of
the objects, by utilizing the study_id, subject_id, and
sample_id fields to uniquely identify the Study, Subject and
Sample objects across multiple repertoires. The exception is that
CellProcessing and NucleicAcidProcessing do not have their own
unique identifiers, so they are included within Sample.

AIRR extension properties

The OpenAPI V2 specification provides the ability to define extension
properties on schema objects. These are additional properties on
the schema definition directly, not to be confused with additional
properties on the data. These extension properties allow those schema
definitions to be annotated with MiAIRR and AIRR specific
information. Instead of creating separate extensions for each
property, a single extension x-airr property is defined, which is
an object that contains any number of properties. Within the AIRR
schema, AIRR_Extension defines the schema for the x-airr
object and the properties within it. Here is a list of the currently
supported AIRR extension properties:

	Extension

	Description

	miairr

	Present if the annotated property is a MiAIRR data standard
element. Always has a requirement level
assigned to it.

	nullable

	Assumes miairr. False if the annotated property must not be
NULL by the MiAIRR standard, otherwise True or null.

	set

	Assumes miairr. The MiAIRR set for the annotated property.

	subset

	Assumes miairr. The MiAIRR subset for the annotated property.

	name

	Assumes miairr. The MiAIRR field name.

	format

	Describes the format for the annotated property. Value is either
free text, controlled vocabulary or ontology.

	ontology

	If format=ontology then this provides additional information
about the ontology including draft status, name, URL and top
node term.

Schema Definitions

	Requirement levels of fields
	Clarification of Terms

	Categories of AIRR Schema Fields

	Compliance with the MiAIRR Data Standard

	Repertoire Schema
	Multiple Data Processing on a Repertoire

	Linking Data

	Duality between Repertoires and Rearrangements

	File Format Specification

	Repertoire Fields

	Study Fields

	Subject Fields

	Diagnosis Fields

	Sample Fields

	Tissue and Cell Processing Fields

	Nucleic Acid Processing Fields

	PCR Target Locus Fields

	Raw Sequence Data Fields

	Sequencing Run Fields

	Data Processing Fields

	Rearrangement Schema
	File Format Specification

	Data Values

	Definition Clarifications

	Fields

	Alignment Schema (Experimental)
	File Format Specification

	Fields

	Clone and Lineage Tree Schema (Experimental)
	File Format Specification

	Clone Fields

	Tree Fields

	Node Fields

	Cell Schema (Experimental)
	File Format Specification

	Cell Fields

Requirement Levels of AIRR Schema Fields

Clarification of Terms

	The terms “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY” and “OPTIONAL” are to be interpreted as
described in [RFC2119].

	The terms “IF” and “ONLY IF” are are to be interpreted as sufficent
and necessary requirement, respectively.

	The term “NULL-LIKE” is an extension of the NULL term in SQL and
its equivalents in other programming languages, referring to the
absence of data in a field (i.e., the field is empty). NULL-LIKE
additionally includes the following terms, which also define the
reason why the information is missing. As these terms are expected to
be provided as text, the field would not be NULL but nevertheless
NULL-LIKE (i.e., it lacks biologically interpretable information).

	not_applicable: There is no meaningful value for this field
due to study design (e.g., sex for a phage library).

	not_collected: Data for this field was not collected during
the study.

	missing: Data for field was collected, but is not available
now.

Categories of AIRR Schema Fields

	Fields MUST be indicated by the x-airr:miairr property IF and
ONLY IF the field or its content is governed by the MiAIRR data
standard [Rubelt_2017].

	The x-airr:miairr property MUST be assigned to one of the
following three requirement levels:

	essential: Information on this field MUST be provided and is
considered critical for the meaningful interpretation of the data.
Therefore the value of such a field MUST NOT be NULL-LIKE. Due to
this strict requirement, this level is only assigned to a small
set of fields. Importantly, fields are not elevated to this
level based on the fact that the respective information should
typically be available to the data generator. This was decided to
simplify MiAIRR-compliant data annotation by third parties, who
might perform this task based on publicly available information
only.

	important: Information for this field MUST be provided.
However, the field MAY be assigned a NULL-LIKE value if the
respective information is not available. The majority of fields
governed by the MiAIRR data standard are assigned to this level.

	defined: Information for this field MAY be provided. However,
IF information matching the semantic definition of the field is
provided, this field MUST be used for reporting.

Compliance with the MiAIRR Data Standard

	Compliance to the MiAIRR Data Standard is currently a binary state,
i.e., a data either is or is not compliant, there are not “grades”
of compliance. However, additional requirements for specific use
cases might be defined in the future.

	Data sets are considered MiAIRR-compliant ONLY IF all essential
and important fields are reported.

	Note that important fields with NULL-LIKE values MUST NOT be
dropped from a data set.

	Implementors of data entry interfaces SHOULD NOT set the default
value of important fields to NULL-LIKE values, i.e., users should
be required to actively select the values.

Repertoire Schema

A Repertoire is an abstract organizational unit of analysis that
is defined by the researcher and consists of study metadata, subject
metadata, sample metadata, cell processing metadata, nucleic acid
processing metadata, sequencing run metadata, a set of raw sequence
files, data processing metadata, and a set of Rearrangements. A
Repertoire gathers all of this information together into a
composite object, which can be easily accessed by computer programs
for data entry, analysis and visualization.

A Repertoire is specific to a single subject otherwise it can
consist of any number of samples (which can be processed in different
ways), any number of raw sequence files, and any number of
rearrangements. It can also consist of any number of data processing
metadata objects that describe the processing of raw sequence files
into Rearrangements.

Typically, a Repertoire corresponds to the biological concept of
the immune repertoire for that single subject which the researcher
experimentally measures and computationally analyzes. However,
researchers can have different interpretations about what constitutes
the biological immune repertoire; therefore, the Repertoire schema
attempts to be flexible and broadly useful for all AIRR-seq studies.

Another researcher can take the same raw sequencing data and
associated metadata and create their own Repertoire that is
different from the original researcher’s. A common example is to
define a repertoire that is a subset such as “productive
rearrangements for IGHV4” whereas the original researcher defined a
more generic “B cell repertoire”. This new Repertoire would have
much of the same metadata as the original Repertoire, except
associated with a different study, and with additional information in
the data processing metadata that describes how the rearrangements
were filtered down to just the “productive rearrangements for
IGHV4”. Likewise, another researcher may get access to the original
biosample material and perform their own sample processing and
sequencing, which also would be a new Repertoire. That new
Repertoire could combine samples from the original researcher’s
Repertoire with the new sample data as a large dataset for the
subject.

Multiple Data Processing on a Repertoire

Data processing can be a complicated multi-stage
process. Documenting the process in a formal way is challenging
because of the diversity of actions that may be performed. The MiAIRR
standard requires documentation of the process but in an informal way
with free text descriptions. A Repertoire might undergo multiple
different data processing for any number of reasons, e.g. to
compare the results from different toolchains, or to compare different
settings for the same toolchain.

It is expected that all of the Samples of a Repertoire will be
processed together within a DataProcessing. That is, a
DataProcessing that only uses some but not all samples in a
Repertoire could be confusing to users and appear as though data
is missing. Likewise, processing some samples within a Repertoire
with one DataProcessing and the remaining samples with a
different DataProcessing could also confuse users. Because
DataProcessing is unstructured information, it is not possible
to validate that all Samples in a Repertoire are being
processed together, so this expectation cannot be strictly
enforced.

Having multiple DataProcessing for a Repertoire will
create multiple sets of Rearrangements that are distinct and
separate from each other. Analysis tools need to be careful not to mix
these sets of Rearrangements from different DataProcessing
because it can generate incorrect results. The identifier
data_processing_id was added so Rearrangements can
identify their specific DataProcessing.

Linking Data

Each Repertoire has a unique repertoire_id identifier. This
identifier should be globally unique so that repertoires from multiple
studies can be combined together without conflict. The
repertoire_id is used to link other AIRR data to a
Repertoire. Specifically, the Rearrangements Schema includes repertoire_id for referencing the
specific Repertoire for that Rearrangement.

If a Repertoire has multiple DataProcessing then
data_processing_id should be used to distinguish the
appropriate DataProcessing within the Repertoire. The
Rearrangements contains data_processing_id for this
purpose. The data_processing_id is only unique within a
Repertoire so repertoire_id should first be used to get the
appropriate Repertoire object and then data_processing_id
used to acquire the appropriate DataProcessing.

It is expected that typical Repertoires might only have a single
DataProcessing, in which case repertoire_id and
data_processing_id will be semantically equivalent and only the
former should be used.

If a Repertoire has multiple sample processing objects in the sample
array then sample_processing_id should be used to distinguish the
the approrpiate sample processing object within the Repertoire. The
Rearrangement object can contain a sample_processing_id to uniquely
identify a sample processing object within a Repertoire. Like
data_processing_id, the sample_processing_id is only unique within
the Repertoire so repertoire_id should first be used to get the
appropiate Repertoire object and then sample_processing_id should
be used to determine the appropiate sample processing object that is associated
with the Rearrangement. If the Rearrangement object does not have a
sample_processing_id then it can be assumed that the rearrangement is
associated with all of the samples in the Repertoire (e.g. the rearrangement
is a collapsed rearrangement across multiple samples).

It is expected that Repertoires might often have a single
sample processing object, in which case repertoire_id and
sample_processing_id will be semantically equivalent and only the
former should be used.

Finally, if it is necessary to link a Rearrangement object with a unique
pairing of sample processing and DataProcessing, the repertoire_id of
the Rearrangement object should be used to identify the correct Repertoire
object and then the data_processing_id should be used to identify the correct
DataProcessing metadata and the sample_processing_id should be used to
identify the correct sample processing metadata within that Repertoire.

Duality between Repertoires and Rearrangements

There is an important duality relationship between Repertoires and
Rearrangements, specifically with the experimental protocols
described in the Repertoire versus the annotations on
Rearrangements. A Repertoire defines an experimental design
for what a researcher intends to measure or observe, while the
Rearrangements are what was actually measured and
observed. Technically, the border between the two occurs at
sequencing, that is when the biological physical entity (prepared DNA)
is measured and recorded as information (nucleotide sequence).

This duality is important when considering how to answer certain
questions. For example, locus for Rearrangements may have the
value “IGH” which indicates that B cell heavy chain receptors were
measured, yet the Repertoire might have “T cell” in
cell_subset which indicates the researcher intended to measure T
cells. This conflict between the two indicates something is
wrong. Differences can occur in many ways, as with errors in the
experimental protocol, or data processing might have incorrectly
processed the raw sequencing data leading to invalid annotations.

File Format Specification

Files are YAML/JSON with a structure defined below. Files should be
encoded as UTF-8. Identifiers are case-sensitive. Files should have the
extension .yaml, .yml, or .json.

File Structure

	The file as a whole is considered a dictionary (key/value pair) structure with the keys Info and Repertoire.

	The file can (optionally) contain an Info object, at the beginning of the file, based upon the Info schema in the OpenAPI V2 specification. If provided, version in Info should reference the version of the AIRR schema for the file.

	The file should correspond to a list of Repertoire objects, using Repertoire as the key to the list.

	Each Repertoire object should contain a top-level key/value pair for repertoire_id that uniquely identifies the repertoire.

	Some fields require the use of a particular ontology or controlled vocabulary.

	The structure is the same regardless of whether the data is stored in a file or a data repository. For example, The ADC API will return a properly structured JSON object that can be saved to a file and used directly without modification.

Repertoire Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	repertoire_id

	string

	optional, identifier, nullable

	Identifier for the repertoire object. This identifier should be globally unique so that repertoires from multiple studies can be combined together without conflict. The repertoire_id is used to link other AIRR data to a Repertoire. Specifically, the Rearrangements Schema includes repertoire_id for referencing the specific Repertoire for that Rearrangement.

	repertoire_name

	string

	optional, nullable

	Short generic display name for the repertoire

	repertoire_description

	string

	optional, nullable

	Generic repertoire description

	study

	Study

	required

	Study object

	subject

	Subject

	required

	Subject object

	sample

	array

	required

	List of Sample objects

	data_processing

	array of DataProcessing

	required

	List of Data Processing objects

Study Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	study_id

	string

	required, nullable

	Unique ID assigned by study registry

	study_title

	string

	required, nullable

	Descriptive study title

	study_type

	Ontology

	required, nullable

	Type of study design

	study_description

	string

	optional, nullable

	Generic study description

	inclusion_exclusion_criteria

	string

	required, nullable

	List of criteria for inclusion/exclusion for the study

	grants

	string

	required, nullable

	Funding agencies and grant numbers

	collected_by

	string

	required, nullable

	Full contact information of the data collector, i.e. the person who is legally responsible for data collection and release. This should include an e-mail address.

	lab_name

	string

	required, nullable

	Department of data collector

	lab_address

	string

	required, nullable

	Institution and institutional address of data collector

	submitted_by

	string

	required, nullable

	Full contact information of the data depositor, i.e. the person submitting the data to a repository. This is supposed to be a short-lived and technical role until the submission is relased.

	pub_ids

	string

	required, nullable

	Publications describing the rationale and/or outcome of the study

	keywords_study

	array of string

	required, nullable

	Keywords describing properties of one or more data sets in a study

Subject Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	subject_id

	string

	required, nullable

	Subject ID assigned by submitter, unique within study

	synthetic

	boolean

	required

	TRUE for libraries in which the diversity has been synthetically generated (e.g. phage display)

	species

	Ontology

	required

	Binomial designation of subject’s species

	organism

	Ontology

	DEPRECATED

	Binomial designation of subject’s species

	sex

	string

	required, nullable

	Biological sex of subject

	age_min

	number

	required, nullable

	Specific age or lower boundary of age range.

	age_max

	number

	required, nullable

	Upper boundary of age range or equal to age_min for specific age. This field should only be null if age_min is null.

	age_unit

	Ontology

	required, nullable

	Unit of age range

	age_event

	string

	required, nullable

	Event in the study schedule to which Age refers. For NCBI BioSample this MUST be sampling. For other implementations submitters need to be aware that there is currently no mechanism to encode to potential delta between Age event and Sample collection time, hence the chosen events should be in temporal proximity.

	age

	string

	DEPRECATED

	

	ancestry_population

	string

	required, nullable

	Broad geographic origin of ancestry (continent)

	ethnicity

	string

	required, nullable

	Ethnic group of subject (defined as cultural/language-based membership)

	race

	string

	required, nullable

	Racial group of subject (as defined by NIH)

	strain_name

	string

	required, nullable

	Non-human designation of the strain or breed of animal used

	linked_subjects

	string

	required, nullable

	Subject ID to which Relation type refers

	link_type

	string

	required, nullable

	Relation between subject and linked_subjects, can be genetic or environmental (e.g.exposure)

	diagnosis

	array of Diagnosis

	optional

	Diagnosis information for subject

Diagnosis Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	study_group_description

	string

	required, nullable

	Designation of study arm to which the subject is assigned to

	disease_diagnosis

	Ontology

	required, nullable

	Diagnosis of subject

	disease_length

	string

	required, nullable

	Time duration between initial diagnosis and current intervention

	disease_stage

	string

	required, nullable

	Stage of disease at current intervention

	prior_therapies

	string

	required, nullable

	List of all relevant previous therapies applied to subject for treatment of Diagnosis

	immunogen

	string

	required, nullable

	Antigen, vaccine or drug applied to subject at this intervention

	intervention

	string

	required, nullable

	Description of intervention

	medical_history

	string

	required, nullable

	Medical history of subject that is relevant to assess the course of disease and/or treatment

Sample Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sample_id

	string

	required, nullable

	Sample ID assigned by submitter, unique within study

	sample_type

	string

	required, nullable

	The way the sample was obtained, e.g. fine-needle aspirate, organ harvest, peripheral venous puncture

	tissue

	Ontology

	required, nullable

	The actual tissue sampled, e.g. lymph node, liver, peripheral blood

	anatomic_site

	string

	required, nullable

	The anatomic location of the tissue, e.g. Inguinal, femur

	disease_state_sample

	string

	required, nullable

	Histopathologic evaluation of the sample

	collection_time_point_relative

	string

	required, nullable

	Time point at which sample was taken, relative to Collection time event

	collection_time_point_reference

	string

	required, nullable

	Event in the study schedule to which Sample collection time relates to

	biomaterial_provider

	string

	required, nullable

	Name and address of the entity providing the sample

Tissue and Cell Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	tissue_processing

	string

	required, nullable

	Enzymatic digestion and/or physical methods used to isolate cells from sample

	cell_subset

	Ontology

	required, nullable

	Commonly-used designation of isolated cell population

	cell_phenotype

	string

	required, nullable

	List of cellular markers and their expression levels used to isolate the cell population

	cell_species

	Ontology

	optional, nullable

	Binomial designation of the species from which the analyzed cells originate. Typically, this value should be identical to species, if which case it SHOULD NOT be set explicitly. Howver, there are valid experimental setups in which the two might differ, e.g. chimeric animal models. If set, this key will overwrite the species information for all lower layers of the schema.

	single_cell

	boolean

	required, nullable

	TRUE if single cells were isolated into separate compartments

	cell_number

	integer

	required, nullable

	Total number of cells that went into the experiment

	cells_per_reaction

	integer

	required, nullable

	Number of cells for each biological replicate

	cell_storage

	boolean

	required, nullable

	TRUE if cells were cryo-preserved between isolation and further processing

	cell_quality

	string

	required, nullable

	Relative amount of viable cells after preparation and (if applicable) thawing

	cell_isolation

	string

	required, nullable

	Description of the procedure used for marker-based isolation or enrich cells

	cell_processing_protocol

	string

	required, nullable

	Description of the methods applied to the sample including cell preparation/ isolation/enrichment and nucleic acid extraction. This should closely mirror the Materials and methods section in the manuscript.

Nucleic Acid Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	template_class

	string

	required

	The class of nucleic acid that was used as primary starting material for the following procedures

	template_quality

	string

	required, nullable

	Description and results of the quality control performed on the template material

	template_amount

	string

	required, nullable

	Amount of template that went into the process

	library_generation_method

	string

	required

	Generic type of library generation

	library_generation_protocol

	string

	required, nullable

	Description of processes applied to substrate to obtain a library that is ready for sequencing

	library_generation_kit_version

	string

	required, nullable

	When using a library generation protocol from a commercial provider, provide the protocol version number

	pcr_target

	array of PCRTarget

	optional

	If a PCR step was performed that specifically targets the IG/TR loci, the target and primer locations need to be provided here. This field holds an array of PCRTarget objects, so that multiplex PCR setups amplifying multiple loci at the same time can be annotated using one record per locus. PCR setups not targeting any specific locus must not annotate this field but select the appropriate library_generation_method instead.

	complete_sequences

	string

	required

	To be considered complete, the procedure used for library construction MUST generate sequences that 1) include the first V gene codon that encodes the mature polypeptide chain (i.e. after the leader sequence) and 2) include the last complete codon of the J gene (i.e. 1 bp 5’ of the J->C splice site) and 3) provide sequence information for all positions between 1) and 2). To be considered complete & untemplated, the sections of the sequences defined in points 1) to 3) of the previous sentence MUST be untemplated, i.e. MUST NOT overlap with the primers used in library preparation. mixed should only be used if the procedure used for library construction will likely produce multiple categories of sequences in the given experiment. It SHOULD NOT be used as a replacement of a NULL value.

	physical_linkage

	string

	required

	In case an experimental setup is used that physically links nucleic acids derived from distinct Rearrangements before library preparation, this field describes the mode of that linkage. All hetero_* terms indicate that in case of paired-read sequencing, the two reads should be expected to map to distinct IG/TR loci. *_head-head refers to techniques that link the 5’ ends of transcripts in a single-cell context. *_tail-head refers to techniques that link the 3’ end of one transcript to the 5’ end of another one in a single-cell context. This term does not provide any information whether a continuous reading-frame between the two is generated. *_prelinked refers to constructs in which the linkage was already present on the DNA level (e.g. scFv).

PCR Target Locus Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	pcr_target_locus

	string

	required, nullable

	Designation of the target locus. Note that this field uses a controlled vocubulary that is meant to provide a generic classification of the locus, not necessarily the correct designation according to a specific nomenclature.

	forward_pcr_primer_target_location

	string

	required, nullable

	Position of the most distal nucleotide templated by the forward primer or primer mix

	reverse_pcr_primer_target_location

	string

	required, nullable

	Position of the most proximal nucleotide templated by the reverse primer or primer mix

Raw Sequence Data Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	file_type

	string

	required, nullable

	File format for the raw reads or sequences

	filename

	string

	required, nullable

	File name for the raw reads or sequences. The first file in paired-read sequencing.

	read_direction

	string

	required, nullable

	Read direction for the raw reads or sequences. The first file in paired-read sequencing.

	read_length

	integer

	required, nullable

	Read length in bases for the first file in paired-read sequencing

	paired_filename

	string

	required, nullable

	File name for the second file in paired-read sequencing

	paired_read_direction

	string

	required, nullable

	Read direction for the second file in paired-read sequencing

	paired_read_length

	integer

	required, nullable

	Read length in bases for the second file in paired-read sequencing

Sequencing Run Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequencing_run_id

	string

	required, nullable

	ID of sequencing run assigned by the sequencing facility

	total_reads_passing_qc_filter

	integer

	required, nullable

	Number of usable reads for analysis

	sequencing_platform

	string

	required, nullable

	Designation of sequencing instrument used

	sequencing_facility

	string

	required, nullable

	Name and address of sequencing facility

	sequencing_run_date

	string

	required, nullable

	Date of sequencing run

	sequencing_kit

	string

	required, nullable

	Name, manufacturer, order and lot numbers of sequencing kit

	sequencing_files

	RawSequenceData

	optional

	Set of sequencing files produced by the sequencing run

Data Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	data_processing_id

	string

	optional, identifier, nullable

	Identifier for the data processing object.

	primary_annotation

	boolean

	optional, identifier

	If true, indicates this is the primary or default data processing for the repertoire and its rearrangments. If false, indicates this is a secondary or additional data processing.

	software_versions

	string

	required, nullable

	Version number and / or date, include company pipelines

	paired_reads_assembly

	string

	required, nullable

	How paired end reads were assembled into a single receptor sequence

	quality_thresholds

	string

	required, nullable

	How sequences were removed from (4) based on base quality scores

	primer_match_cutoffs

	string

	required, nullable

	How primers were identified in the sequences, were they removed/masked/etc?

	collapsing_method

	string

	required, nullable

	The method used for combining multiple sequences from (4) into a single sequence in (5)

	data_processing_protocols

	string

	required, nullable

	General description of how QC is performed

	data_processing_files

	array of string

	optional, nullable

	Array of file names for data produced by this data processing.

	germline_database

	string

	required, nullable

	Source of germline V(D)J genes with version number or date accessed.

	analysis_provenance_id

	string

	optional, nullable

	Identifier for machine-readable PROV model of analysis provenance

Rearrangement Schema

A Rearrangement is a sequence which describes a rearranged adaptive
immune receptor chain (e.g., antibody heavy chain or TCR beta chain)
along with a host of annotations. These annotations are defined by the
AIRR Rearrangement schema and comprises eight categories.

	Category

	Description

	Input

	The input sequence to the V(D)J assignment process.

	Identifiers

	Primary and foreign key identifiers for linking AIRR data across files and databases.

	Primary Annotations

	The primary outputs of the V(D)J assignment process, which includes the gene locus, V, D, J, and C gene calls, various flags, V(D)J junction sequence, copy number (duplicate_count), and the number of reads contributing to a consensus input sequence (consensus_count).

	Alignment Annotations

	Detailed alignment annotations including the input and germline sequences used in the alignment; score, identity, statistical support (E-value, likelihood, etc); and the alignment itself through CIGAR strings for each aligned gene.

	Alignment Positions

	The start/end positions for genes in both the input and germline sequences.

	Region Sequence

	Sequence annotations for the framework regions (FWRs) and complementarity-determining regions (CDRs).

	Region Positions

	Positional annotations for the framework regions (FWRs) and complementarity-determining regions (CDRs).

	Junction Lengths

	Lengths for junction sub-regions associated with aspects of the V(D)J recombination process.

File Format Specification

Data for Rearrangement or Alignment objects are stored as rows in a
tab-delimited file and should be compatible with any TSV reader.
A dataset is defined in this context as: a TSV file, a TSV with a companion YAML file
containing metadata, or a directory containing multiple TSV files and YAML files.

Encoding

	The file should be encoded as ASCII or UTF-8.

	Everything is case-sensitive.

Dialect

	The record separator is a newline \n and the field separator is a tab \t.

	Fields or data should not be quoted.

	A header line with the AIRR-specified column names is always required.

	Values must not contain tab or newline characters.

	Values should avoid @, #, and quote (" or ') characters,
as the result may be implementation dependent.

	Nested delimiters are not supported by the schema explicitly and should be avoided.
However, if multiple values must be reported in a single column for an application
specific reason, then the use of a comma as the delimiter is recommended.

File names

AIRR formatted TSV files should end with .tsv.

File Structure

The data file has two sections in this order:

	Header. A single line with column names.

	Data values. One record per line.

A comment section preceding the header (e.g., # or @ blocks) is not part of the
specification, but such a section is reserved for potential inclusion in a future
release. As such, a comment section should not be included in the file as it may
be incompatible with a future specification.

Header

A single line containing the column names and specifying the field order.
Any field that corresponds to one of the defined fields should use the
specified field name.

Required columns

Some of the fields are defined as required and therefore must always be present
in the header. Note, however, that all columns allow for null values. Therefore,
required columns exist to define a core set of fields that are always present in
the table structure, but do not mandate that a value be reported.

Custom columns

There are no restrictions on inclusion of additional custom columns in the
Rearrangements file, provided such columns do not use the same name as an
existing required or optional field. It is recommended that custom fields
follow the same naming scheme as existing fields. Meaning, snake_case
with narrowing scope when read from left to right. For example,
sequence_id is the “identifier of the query sequence”.

Consider submitting a pull request for a field name reservation to the
airr-standards repository [https://github.com/airr-community/airr-standards]
if the field may be broadly useful.

Ordering

There are no requirements that fields or records be sorted or
ordered in any specific way. However, the field ordering provided by the
schema is a recommended default, with top-to-bottom equating to left-to-right.

Data Values

The possible data types are string, boolean, number (floating point),
integer, and null (empty string).

Boolean values

Boolean values must be encoded as T for true and F for false.

Null values

All fields may contain null values. This includes columns that are described as
required. A null value should be encoded as an empty string.

Coordinate numbering

All alignment sequence coordinates use the same scheme as IMGT and INSDC
(DDBJ, ENA, GenBank), with the exception that partial coordinate information
should not be used in favor of simply assigning the start/end of the alignment.
Meaning, coordinates should be provided as 1-based values with closed intervals,
without the use of > or < annotations that denoted a partial region.

CIGAR specification

Alignments details are specified using the CIGAR format as defined in the
SAM specifications [https://samtools.github.io/hts-specs/SAMv1.pdf], with
some vocabulary restrictions on the use of clipping, skipping, and
padding operators.

The CIGAR string defines the reference sequence as the germline sequence of the
given gene or region; e.g., for v_cigar the reference
is the V gene germline sequence. The query sequence is what was input into the
alignment tool, which must correspond to what is contained in the sequence
field of the Rearrangement data. For the majority of use cases, this will
necessarily exclude alignment spacers from the CIGAR string, such as IMGT
numbering gaps. However, any gaps appearing in the query sequence
should be accounted for in the CIGAR string so that the alignment between
the query and reference is correctly represented.

The valid operator sets and definitions are as follows:

	Operator

	Description

	=

	An identical non-gap character.

	X

	A differing non-gap character.

	M

	A positional match in the alignment. This can be either an identical (=) or differing (x) non-gap character.

	D

	Deletion in the query (gap in the query).

	I

	Insertion in the query (gap in the reference).

	S

	Positions that appear in the query, but not the reference. Used exclusively to denote the start position of the alignment in the query. Should precede any N operators.

	N

	A space in the alignment. Used exclusively to denote the start position of the alignment in the reference. Should follow any S operators.

Note, the use of either the =/X or M syntax is valid, but should be used consistently.
While leading S and N operators are required, tailing S and N operators are optional.

For example, an D gene alignment that starts at position 419 in the query sequence
(leading 418S), that is 16 nucleotides long with no indels (middle 16M),
has an 10 nucleotide 5’ deletion (leading 10N), a 5 nucleotide 3’ deletion (trailing 5N),
and ends 72 nucleotides from the end of the query sequence (trailing 71S) would
have the following D gene CIGAR string (d_cigar) and positional information:

	Field

	Value

	d_cigar

	418S10N16M71S5N

	d_sequence_start

	419

	d_sequence_end

	434

	d_germline_start

	11

	d_germline_end

	26

Definition Clarifications

Junction versus CDR3

We work with the IMGT definitions of the junction and CDR3 regions. Specifically,
the IMGT JUNCTION includes the conserved cysteine and tryptophan/phenylalanine
residues, while CDR3 excludes those two residues. Therefore, our junction
and junction_aa fields which represent the extracted sequence include the two
conserved residues, while the coordinate fields (cdr3_start and cdr3_end)
exclude them.

Productive

The schema does not define a strict definition of a productive rearrangement.
However, the IMGT definition is recommended:

	Coding region has an open reading frame

	No defect in the start codon, splicing sites or regulatory elements.

	No internal stop codons.

	An in-frame junction region.

Locus names

A naming convention for locus names is not strictly enforced, but the IMGT
locus names are recommended. For example, in the case of human data, this would
be the set: IGH, IGK, IGL, TRA, TRB, TRD, or TRG.

Gene and allele names

Gene call examples use the IMGT nomenclature, but no specific gene or allele
nomenclature is strictly mandated. Species denotations may or may not be included in the
gene name, as appropriate. For example, “Homo sapiens IGHV4-59*01”, “IGHV4-59*01” and
“AB019438” are all valid entries for the same allele.

However, when using an established reference database to assign gene calls
adherence to the exact nomenclature used by the reference database is strongly
recommended, as this will facilitate mapping to the database entries, cross-study
comparison, and upload to public repositories.

Alignments

There is no required alignment scheme for the nucleotide and amino acid alignment
fields. These fields may, or may not, include numbering spacers (e.g., IMGT-numbering gaps),
variations in case to denote mismatches, deletions, or other features appropriate to the tool that
performed the alignment. The only strict requirement is that the query (“sequence”) and
reference (“germline”) must be properly aligned.

Fields

The specification includes two classes of fields. Those that are
required and those that are optional. Required is defined as a column
that must be present in the header of the TSV. Optional is defined as
column that may, or may not, appear in the TSV. All fields, including
required fields, are nullable by assigning an empty string as the
value. There are no requirements for column ordering in the schema,
although the Python and R reference APIs enforce ordering for the sake
of generating predictable output. The set of optional fields that
provide alignment and region coordinates (“_start” and “_end” fields)
are defined as 1- based closed intervals, similar to the SAM, VCF,
GFF, IMGT, and INDSC formats (GenBank, ENA, and DDJB;
http://www.insdc.org).

Most fields have strict definitions for the values that they
contain. However, some commonly provided information cannot be
standardized across diverse toolchains, so a small selection of fields
have context-dependent definitions. In particular, these
context-dependent fields include the optional “_score,” “_identity,”
and “_support” fields used for assessing the quality of alignments
which vary considerably in definition based on the methodology
used. Similarly, the “_alignment” fields require strict alignment
between the corresponding observed and germline sequences, but the
manner in which that alignment is conveyed is somewhat flexible in
that it allows for any numbering scheme (e.g., IMGT or KABAT) or lack
thereof.

By default, data elements representing sequences in the schema contain
nucleotide sequences except for data elements ending in “_aa,” which
are amino acid translations of the associated nucleotide sequence.

While the format contains an extensive list of reserved field names,
there are no restrictions on inclusion of custom fields in the TSV
file, provided such custom fields have a unique name. Furthermore,
suggestions for extending the format with additional reserved names
are welcomed through the issue tracker on the GitHub repository
(https://github.com/airr-community/airr-standards).

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequence_id

	string

	required, identifier, nullable

	Unique query sequence identifier for the Rearrangment. Most often this will be the input sequence header or a substring thereof, but may also be a custom identifier defined by the tool in cases where query sequences have been combined in some fashion prior to alignment. When downloaded from an AIRR Data Commons repository, this will usually be a universally unique record locator for linking with other objects in the AIRR Data Model.

	sequence

	string

	required, nullable

	The query nucleotide sequence. Usually, this is the unmodified input sequence, which may be reverse complemented if necessary. In some cases, this field may contain consensus sequences or other types of collapsed input sequences if these steps are performed prior to alignment.

	sequence_aa

	string

	optional, nullable

	Amino acid translation of the query nucleotide sequence.

	rev_comp

	boolean

	required, nullable

	True if the alignment is on the opposite strand (reverse complemented) with respect to the query sequence. If True then all output data, such as alignment coordinates and sequences, are based on the reverse complement of ‘sequence’.

	productive

	boolean

	required, nullable

	True if the V(D)J sequence is predicted to be productive.

	vj_in_frame

	boolean

	optional, nullable

	True if the V and J gene alignments are in-frame.

	stop_codon

	boolean

	optional, nullable

	True if the aligned sequence contains a stop codon.

	complete_vdj

	boolean

	optional, nullable

	True if the sequence alignment spans the entire V(D)J region. Meaning, sequence_alignment includes both the first V gene codon that encodes the mature polypeptide chain (i.e., after the leader sequence) and the last complete codon of the J gene (i.e., before the J-C splice site). This does not require an absence of deletions within the internal FWR and CDR regions of the alignment.

	locus

	string

	optional, nullable

	Gene locus (chain type). Note that this field uses a controlled vocabulary that is meant to provide a generic classification of the locus, not necessarily the correct designation according to a specific nomenclature.

	v_call

	string

	required, nullable

	V gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHV4-59*01 if using IMGT/GENE-DB).

	d_call

	string

	required, nullable

	First or only D gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHD3-10*01 if using IMGT/GENE-DB).

	d2_call

	string

	optional, nullable

	Second D gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHD3-10*01 if using IMGT/GENE-DB).

	j_call

	string

	required, nullable

	J gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHJ4*02 if using IMGT/GENE-DB).

	c_call

	string

	optional, nullable

	Constant region gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHG1*01 if using IMGT/GENE-DB).

	sequence_alignment

	string

	required, nullable

	Aligned portion of query sequence, including any indel corrections or numbering spacers, such as IMGT-gaps. Typically, this will include only the V(D)J region, but that is not a requirement.

	sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the aligned query sequence.

	germline_alignment

	string

	required, nullable

	Assembled, aligned, full-length inferred germline sequence spanning the same region as the sequence_alignment field (typically the V(D)J region) and including the same set of corrections and spacers (if any).

	germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the assembled germline sequence.

	junction

	string

	required, nullable

	Junction region nucleotide sequence, where the junction is defined as the CDR3 plus the two flanking conserved codons.

	junction_aa

	string

	required, nullable

	Amino acid translation of the junction.

	np1

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between the V gene and first D gene alignment or between the V gene and J gene alignments.

	np1_aa

	string

	optional, nullable

	Amino acid translation of the np1 field.

	np2

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between either the first D gene and J gene alignments or the first D gene and second D gene alignments.

	np2_aa

	string

	optional, nullable

	Amino acid translation of the np2 field.

	np3

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between the second D gene and J gene alignments.

	np3_aa

	string

	optional, nullable

	Amino acid translation of the np3 field.

	cdr1

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR1 region.

	cdr1_aa

	string

	optional, nullable

	Amino acid translation of the cdr1 field.

	cdr2

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR2 region.

	cdr2_aa

	string

	optional, nullable

	Amino acid translation of the cdr2 field.

	cdr3

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR3 region.

	cdr3_aa

	string

	optional, nullable

	Amino acid translation of the cdr3 field.

	fwr1

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR1 region.

	fwr1_aa

	string

	optional, nullable

	Amino acid translation of the fwr1 field.

	fwr2

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR2 region.

	fwr2_aa

	string

	optional, nullable

	Amino acid translation of the fwr2 field.

	fwr3

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR3 region.

	fwr3_aa

	string

	optional, nullable

	Amino acid translation of the fwr3 field.

	fwr4

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR4 region.

	fwr4_aa

	string

	optional, nullable

	Amino acid translation of the fwr4 field.

	v_score

	number

	optional, nullable

	Alignment score for the V gene.

	v_identity

	number

	optional, nullable

	Fractional identity for the V gene alignment.

	v_support

	number

	optional, nullable

	V gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the V gene assignment as defined by the alignment tool.

	v_cigar

	string

	required, nullable

	CIGAR string for the V gene alignment.

	d_score

	number

	optional, nullable

	Alignment score for the first or only D gene alignment.

	d_identity

	number

	optional, nullable

	Fractional identity for the first or only D gene alignment.

	d_support

	number

	optional, nullable

	D gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the first or only D gene as defined by the alignment tool.

	d_cigar

	string

	required, nullable

	CIGAR string for the first or only D gene alignment.

	d2_score

	number

	optional, nullable

	Alignment score for the second D gene alignment.

	d2_identity

	number

	optional, nullable

	Fractional identity for the second D gene alignment.

	d2_support

	number

	optional, nullable

	D gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the second D gene as defined by the alignment tool.

	d2_cigar

	string

	optional, nullable

	CIGAR string for the second D gene alignment.

	j_score

	number

	optional, nullable

	Alignment score for the J gene alignment.

	j_identity

	number

	optional, nullable

	Fractional identity for the J gene alignment.

	j_support

	number

	optional, nullable

	J gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the J gene assignment as defined by the alignment tool.

	j_cigar

	string

	required, nullable

	CIGAR string for the J gene alignment.

	c_score

	number

	optional, nullable

	Alignment score for the C gene alignment.

	c_identity

	number

	optional, nullable

	Fractional identity for the C gene alignment.

	c_support

	number

	optional, nullable

	C gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the C gene assignment as defined by the alignment tool.

	c_cigar

	string

	optional, nullable

	CIGAR string for the C gene alignment.

	v_sequence_start

	integer

	optional, nullable

	Start position of the V gene in the query sequence (1-based closed interval).

	v_sequence_end

	integer

	optional, nullable

	End position of the V gene in the query sequence (1-based closed interval).

	v_germline_start

	integer

	optional, nullable

	Alignment start position in the V gene reference sequence (1-based closed interval).

	v_germline_end

	integer

	optional, nullable

	Alignment end position in the V gene reference sequence (1-based closed interval).

	v_alignment_start

	integer

	optional, nullable

	Start position of the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	v_alignment_end

	integer

	optional, nullable

	End position of the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_sequence_start

	integer

	optional, nullable

	Start position of the first or only D gene in the query sequence. (1-based closed interval).

	d_sequence_end

	integer

	optional, nullable

	End position of the first or only D gene in the query sequence. (1-based closed interval).

	d_germline_start

	integer

	optional, nullable

	Alignment start position in the D gene reference sequence for the first or only D gene (1-based closed interval).

	d_germline_end

	integer

	optional, nullable

	Alignment end position in the D gene reference sequence for the first or only D gene (1-based closed interval).

	d_alignment_start

	integer

	optional, nullable

	Start position of the first or only D gene in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_alignment_end

	integer

	optional, nullable

	End position of the first or only D gene in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d2_sequence_start

	integer

	optional, nullable

	Start position of the second D gene in the query sequence (1-based closed interval).

	d2_sequence_end

	integer

	optional, nullable

	End position of the second D gene in the query sequence (1-based closed interval).

	d2_germline_start

	integer

	optional, nullable

	Alignment start position in the second D gene reference sequence (1-based closed interval).

	d2_germline_end

	integer

	optional, nullable

	Alignment end position in the second D gene reference sequence (1-based closed interval).

	d2_alignment_start

	integer

	optional, nullable

	Start position of the second D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d2_alignment_end

	integer

	optional, nullable

	End position of the second D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_sequence_start

	integer

	optional, nullable

	Start position of the J gene in the query sequence (1-based closed interval).

	j_sequence_end

	integer

	optional, nullable

	End position of the J gene in the query sequence (1-based closed interval).

	j_germline_start

	integer

	optional, nullable

	Alignment start position in the J gene reference sequence (1-based closed interval).

	j_germline_end

	integer

	optional, nullable

	Alignment end position in the J gene reference sequence (1-based closed interval).

	j_alignment_start

	integer

	optional, nullable

	Start position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_alignment_end

	integer

	optional, nullable

	End position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	cdr1_start

	integer

	optional, nullable

	CDR1 start position in the query sequence (1-based closed interval).

	cdr1_end

	integer

	optional, nullable

	CDR1 end position in the query sequence (1-based closed interval).

	cdr2_start

	integer

	optional, nullable

	CDR2 start position in the query sequence (1-based closed interval).

	cdr2_end

	integer

	optional, nullable

	CDR2 end position in the query sequence (1-based closed interval).

	cdr3_start

	integer

	optional, nullable

	CDR3 start position in the query sequence (1-based closed interval).

	cdr3_end

	integer

	optional, nullable

	CDR3 end position in the query sequence (1-based closed interval).

	fwr1_start

	integer

	optional, nullable

	FWR1 start position in the query sequence (1-based closed interval).

	fwr1_end

	integer

	optional, nullable

	FWR1 end position in the query sequence (1-based closed interval).

	fwr2_start

	integer

	optional, nullable

	FWR2 start position in the query sequence (1-based closed interval).

	fwr2_end

	integer

	optional, nullable

	FWR2 end position in the query sequence (1-based closed interval).

	fwr3_start

	integer

	optional, nullable

	FWR3 start position in the query sequence (1-based closed interval).

	fwr3_end

	integer

	optional, nullable

	FWR3 end position in the query sequence (1-based closed interval).

	fwr4_start

	integer

	optional, nullable

	FWR4 start position in the query sequence (1-based closed interval).

	fwr4_end

	integer

	optional, nullable

	FWR4 end position in the query sequence (1-based closed interval).

	v_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the V gene, including any indel corrections or numbering spacers.

	v_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the v_sequence_alignment field.

	d_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the first or only D gene, including any indel corrections or numbering spacers.

	d_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d_sequence_alignment field.

	d2_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the second D gene, including any indel corrections or numbering spacers.

	d2_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d2_sequence_alignment field.

	j_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the J gene, including any indel corrections or numbering spacers.

	j_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the j_sequence_alignment field.

	c_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the constant region, including any indel corrections or numbering spacers.

	c_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the c_sequence_alignment field.

	v_germline_alignment

	string

	optional, nullable

	Aligned V gene germline sequence spanning the same region as the v_sequence_alignment field and including the same set of corrections and spacers (if any).

	v_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the v_germline_alignment field.

	d_germline_alignment

	string

	optional, nullable

	Aligned D gene germline sequence spanning the same region as the d_sequence_alignment field and including the same set of corrections and spacers (if any).

	d_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d_germline_alignment field.

	d2_germline_alignment

	string

	optional, nullable

	Aligned D gene germline sequence spanning the same region as the d2_sequence_alignment field and including the same set of corrections and spacers (if any).

	d2_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d2_germline_alignment field.

	j_germline_alignment

	string

	optional, nullable

	Aligned J gene germline sequence spanning the same region as the j_sequence_alignment field and including the same set of corrections and spacers (if any).

	j_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the j_germline_alignment field.

	c_germline_alignment

	string

	optional, nullable

	Aligned constant region germline sequence spanning the same region as the c_sequence_alignment field and including the same set of corrections and spacers (if any).

	c_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the c_germline_aligment field.

	junction_length

	integer

	optional, nullable

	Number of nucleotides in the junction sequence.

	junction_aa_length

	integer

	optional, nullable

	Number of amino acids in the junction sequence.

	np1_length

	integer

	optional, nullable

	Number of nucleotides between the V gene and first D gene alignments or between the V gene and J gene alignments.

	np2_length

	integer

	optional, nullable

	Number of nucleotides between either the first D gene and J gene alignments or the first D gene and second D gene alignments.

	np3_length

	integer

	optional, nullable

	Number of nucleotides between the second D gene and J gene alignments.

	n1_length

	integer

	optional, nullable

	Number of untemplated nucleotides 5’ of the first or only D gene alignment.

	n2_length

	integer

	optional, nullable

	Number of untemplated nucleotides 3’ of the first or only D gene alignment.

	n3_length

	integer

	optional, nullable

	Number of untemplated nucleotides 3’ of the second D gene alignment.

	p3v_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the V gene alignment.

	p5d_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the first or only D gene alignment.

	p3d_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the first or only D gene alignment.

	p5d2_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the second D gene alignment.

	p3d2_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the second D gene alignment.

	p5j_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the J gene alignment.

	consensus_count

	integer

	optional, nullable

	Number of reads contributing to the (UMI) consensus for this sequence. For example, the sum of the number of reads for all UMIs that contribute to the query sequence.

	duplicate_count

	integer

	optional, nullable

	Copy number or number of duplicate observations for the query sequence. For example, the number of UMIs sharing an identical sequence or the number of identical observations of this sequence absent UMIs.

	cell_id

	string

	optional, identifier, nullable

	Identifier defining the cell of origin for the query sequence.

	clone_id

	string

	optional, identifier, nullable

	Clonal cluster assignment for the query sequence.

	repertoire_id

	string

	optional, identifier, nullable

	Identifier to the associated repertoire in study metadata.

	sample_processing_id

	string

	optional, identifier, nullable

	Identifier to the sample processing object in the repertoire metadata for this rearrangement. If the repertoire has a single sample then this field may be empty or missing. If the repertoire has multiple samples then this field may be empty or missing if the sample cannot be differentiated or the relationship is not maintained by the data processing.

	data_processing_id

	string

	optional, identifier, nullable

	Identifier to the data processing object in the repertoire metadata for this rearrangement. If this field is empty than the primary data processing object is assumed.

	rearrangement_id

	string

	DEPRECATED

	Identifier for the Rearrangement object. May be identical to sequence_id, but will usually be a univerally unique record locator for database applications.

	rearrangement_set_id

	string

	DEPRECATED

	Identifier for grouping Rearrangement objects.

	germline_database

	string

	DEPRECATED

	Source of germline V(D)J genes with version number or date accessed.

Alignment Schema (Experimental)

An Alignment is the output from a V(D)J assignment process for a
single V, D, J, or C gene for a sequence. It is not necessary
that the V(D)J assignment process performs a sequence alignment
algorithm, as the schema can support any algorithmic process. Multiple
Alignment records are supported and expected for a single sequence
with context-dependent fields (score, identity, support,
rank) for assessing the quality of assignments that can vary
considerably in definition based on the methodology used.

Note, this schema definition is still experimental and should not be
considered final.

File Format Specification

The format specification describes the file format
and details on how to structure this data.

Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequence_id

	string

	required, nullable

	Unique query sequence identifier within the file. Most often this will be the input sequence header or a substring thereof, but may also be a custom identifier defined by the tool in cases where query sequences have been combined in some fashion prior to alignment.

	segment

	string

	required, nullable

	The segment for this alignment. One of V, D, J or C.

	rev_comp

	boolean

	optional, nullable

	Alignment result is from the reverse complement of the query sequence.

	call

	string

	required, nullable

	Gene assignment with allele.

	score

	number

	required, nullable

	Alignment score.

	identity

	number

	optional, nullable

	Alignment fractional identity.

	support

	number

	optional, nullable

	Alignment E-value, p-value, likelihood, probability or other similar measure of support for the gene assignment as defined by the alignment tool.

	cigar

	string

	required, nullable

	Alignment CIGAR string.

	sequence_start

	integer

	optional, nullable

	Start position of the segment in the query sequence (1-based closed interval).

	sequence_end

	integer

	optional, nullable

	End position of the segment in the query sequence (1-based closed interval).

	germline_start

	integer

	optional, nullable

	Alignment start position in the reference sequence (1-based closed interval).

	germline_end

	integer

	optional, nullable

	Alignment end position in the reference sequence (1-based closed interval).

	rank

	integer

	optional, nullable

	Alignment rank.

	rearrangement_id

	string

	optional, nullable

	Identifier for the Rearrangement object. May be identical to sequence_id, but will usually be a universally unique record locator for database applications.

	data_processing_id

	string

	optional, nullable

	Identifier to the data processing object in the repertoire metadata for this rearrangement. If this field is empty than the primary data processing object is assumed.

	germline_database

	string

	DEPRECATED

	Source of germline V(D)J genes with version number or date accessed.

Clone and Lineage Tree Schema (Experimental)

A unique inferred clone object that has been constructed within a
single data processing for a single repertoire and a subset of its
sequences and/or rearrangements.

A clone object may have one or more inferred lineage trees. Each tree
is represented by a Newick string for its edges and a dictionary of
node objects.

File Format Specification

The file format has not been specified yet.

Clone Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	clone_id

	string

	required, nullable

	Identifier for the clone.

	repertoire_id

	string

	optional, nullable

	Identifier to the associated repertoire in study metadata.

	data_processing_id

	string

	optional, nullable

	Identifier of the data processing object in the repertoire metadata for this clone.

	sequences

	array of string

	optional, nullable

	List sequence_id strings that act as keys to the Rearrangement records for members of the clone.

	v_call

	string

	optional, nullable

	V gene with allele of the inferred ancestral of the clone. For example, IGHV4-59*01.

	d_call

	string

	optional, nullable

	D gene with allele of the inferred ancestor of the clone. For example, IGHD3-10*01.

	j_call

	string

	optional, nullable

	J gene with allele of the inferred ancestor of the clone. For example, IGHJ4*02.

	junction

	string

	optional, nullable

	Nucleotide sequence for the junction region of the inferred ancestor of the clone, where the junction is defined as the CDR3 plus the two flanking conserved codons.

	junction_aa

	string

	optional, nullable

	Amino acid translation of the junction.

	junction_length

	integer

	optional, nullable

	Number of nucleotides in the junction.

	junction_aa_length

	integer

	optional, nullable

	Number of amino acids in junction_aa.

	germline_alignment

	string

	required, nullable

	Assembled, aligned, full-length inferred ancestor of the clone spanning the same region as the sequence_alignment field of nodes (typically the V(D)J region) and including the same set of corrections and spacers (if any).

	germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of germline_alignment.

	v_alignment_start

	integer

	optional, nullable

	Start position in the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	v_alignment_end

	integer

	optional, nullable

	End position in the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_alignment_start

	integer

	optional, nullable

	Start position of the D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_alignment_end

	integer

	optional, nullable

	End position of the D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_alignment_start

	integer

	optional, nullable

	Start position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_alignment_end

	integer

	optional, nullable

	End position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	junction_start

	integer

	optional, nullable

	Junction region start position in the alignment (1-based closed interval).

	junction_end

	integer

	optional, nullable

	Junction region end position in the alignment (1-based closed interval).

	sequence_count

	integer

	optional, nullable

	Number of Rearrangement records (sequences) included in this clone

	seed_id

	string

	optional, nullable

	sequence_id of the seed sequence. Empty string (or null) if there is no seed sequence.

Tree Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	tree_id

	string

	required, nullable

	Identifier for the tree.

	clone_id

	string

	required, nullable

	Identifier for the clone.

	newick

	string

	required, nullable

	Newick string of the tree edges.

	nodes

	object

	optional, nullable

	Dictionary of nodes in the tree, keyed by sequence_id string

Node Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequence_id

	string

	required, nullable

	Identifier for this node that matches the identifier in the newick string and, where possible, the sequence_id in the source repertoire.

	sequence_alignment

	string

	optional, nullable

	Nucleotide sequence of the node, aligned to the germline_alignment for this clone, including including any indel corrections or spacers.

	junction

	string

	optional, nullable

	Junction region nucleotide sequence for the node, where the junction is defined as the CDR3 plus the two flanking conserved codons.

	junction_aa

	string

	optional, nullable

	Amino acid translation of the junction.

Cell Schema (Experimental)

The cell object acts as point of reference for all data that can be
related to an individual cell, either by direct observation or
inference.

File Format Specification

The file format has not been specified yet.

Cell Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	cell_id

	string

	required

	Identifier defining the cell of origin for the query sequence.

	rearrangements

	array of string

	required, nullable

	Array of sequence identifiers defined for the Rearrangement object

	receptors

	array of string

	optional, nullable

	Array of receptor identifiers defined for the Receptor object

	repertoire_id

	string

	required, nullable

	Identifier to the associated repertoire in study metadata.

	data_processing_id

	string

	optional, nullable

	Identifier of the data processing object in the repertoire metadata for this clone.

	expression_study_method

	string

	optional, nullable

	keyword describing the methodology used to assess expression. This values for this field MUST come from a controlled vocabulary

	expression_raw_doi

	string

	optional, nullable

	DOI of raw data set containing the current event

	expression_index

	string

	optional, nullable

	Index addressing the current event within the raw data set.

	expression_tabular

	array of object

	optional, nullable

	Expression definitions for single-cell

	virtual_pairing

	boolean

	required, nullable

	boolean to indicate if pairing was inferred.

Rearrangement Schema

A Rearrangement is a sequence which describes a rearranged adaptive
immune receptor chain (e.g., antibody heavy chain or TCR beta chain)
along with a host of annotations. These annotations are defined by the
AIRR Rearrangement schema and comprises eight categories.

	Category

	Description

	Input

	The input sequence to the V(D)J assignment process.

	Identifiers

	Primary and foreign key identifiers for linking AIRR data across files and databases.

	Primary Annotations

	The primary outputs of the V(D)J assignment process, which includes the gene locus, V, D, J, and C gene calls, various flags, V(D)J junction sequence, copy number (duplicate_count), and the number of reads contributing to a consensus input sequence (consensus_count).

	Alignment Annotations

	Detailed alignment annotations including the input and germline sequences used in the alignment; score, identity, statistical support (E-value, likelihood, etc); and the alignment itself through CIGAR strings for each aligned gene.

	Alignment Positions

	The start/end positions for genes in both the input and germline sequences.

	Region Sequence

	Sequence annotations for the framework regions (FWRs) and complementarity-determining regions (CDRs).

	Region Positions

	Positional annotations for the framework regions (FWRs) and complementarity-determining regions (CDRs).

	Junction Lengths

	Lengths for junction sub-regions associated with aspects of the V(D)J recombination process.

File Format Specification

Data for Rearrangement or Alignment objects are stored as rows in a
tab-delimited file and should be compatible with any TSV reader.
A dataset is defined in this context as: a TSV file, a TSV with a companion YAML file
containing metadata, or a directory containing multiple TSV files and YAML files.

Encoding

	The file should be encoded as ASCII or UTF-8.

	Everything is case-sensitive.

Dialect

	The record separator is a newline \n and the field separator is a tab \t.

	Fields or data should not be quoted.

	A header line with the AIRR-specified column names is always required.

	Values must not contain tab or newline characters.

	Values should avoid @, #, and quote (" or ') characters,
as the result may be implementation dependent.

	Nested delimiters are not supported by the schema explicitly and should be avoided.
However, if multiple values must be reported in a single column for an application
specific reason, then the use of a comma as the delimiter is recommended.

File names

AIRR formatted TSV files should end with .tsv.

File Structure

The data file has two sections in this order:

	Header. A single line with column names.

	Data values. One record per line.

A comment section preceding the header (e.g., # or @ blocks) is not part of the
specification, but such a section is reserved for potential inclusion in a future
release. As such, a comment section should not be included in the file as it may
be incompatible with a future specification.

Header

A single line containing the column names and specifying the field order.
Any field that corresponds to one of the defined fields should use the
specified field name.

Required columns

Some of the fields are defined as required and therefore must always be present
in the header. Note, however, that all columns allow for null values. Therefore,
required columns exist to define a core set of fields that are always present in
the table structure, but do not mandate that a value be reported.

Custom columns

There are no restrictions on inclusion of additional custom columns in the
Rearrangements file, provided such columns do not use the same name as an
existing required or optional field. It is recommended that custom fields
follow the same naming scheme as existing fields. Meaning, snake_case
with narrowing scope when read from left to right. For example,
sequence_id is the “identifier of the query sequence”.

Consider submitting a pull request for a field name reservation to the
airr-standards repository [https://github.com/airr-community/airr-standards]
if the field may be broadly useful.

Ordering

There are no requirements that fields or records be sorted or
ordered in any specific way. However, the field ordering provided by the
schema is a recommended default, with top-to-bottom equating to left-to-right.

Data Values

The possible data types are string, boolean, number (floating point),
integer, and null (empty string).

Boolean values

Boolean values must be encoded as T for true and F for false.

Null values

All fields may contain null values. This includes columns that are described as
required. A null value should be encoded as an empty string.

Coordinate numbering

All alignment sequence coordinates use the same scheme as IMGT and INSDC
(DDBJ, ENA, GenBank), with the exception that partial coordinate information
should not be used in favor of simply assigning the start/end of the alignment.
Meaning, coordinates should be provided as 1-based values with closed intervals,
without the use of > or < annotations that denoted a partial region.

CIGAR specification

Alignments details are specified using the CIGAR format as defined in the
SAM specifications [https://samtools.github.io/hts-specs/SAMv1.pdf], with
some vocabulary restrictions on the use of clipping, skipping, and
padding operators.

The CIGAR string defines the reference sequence as the germline sequence of the
given gene or region; e.g., for v_cigar the reference
is the V gene germline sequence. The query sequence is what was input into the
alignment tool, which must correspond to what is contained in the sequence
field of the Rearrangement data. For the majority of use cases, this will
necessarily exclude alignment spacers from the CIGAR string, such as IMGT
numbering gaps. However, any gaps appearing in the query sequence
should be accounted for in the CIGAR string so that the alignment between
the query and reference is correctly represented.

The valid operator sets and definitions are as follows:

	Operator

	Description

	=

	An identical non-gap character.

	X

	A differing non-gap character.

	M

	A positional match in the alignment. This can be either an identical (=) or differing (x) non-gap character.

	D

	Deletion in the query (gap in the query).

	I

	Insertion in the query (gap in the reference).

	S

	Positions that appear in the query, but not the reference. Used exclusively to denote the start position of the alignment in the query. Should precede any N operators.

	N

	A space in the alignment. Used exclusively to denote the start position of the alignment in the reference. Should follow any S operators.

Note, the use of either the =/X or M syntax is valid, but should be used consistently.
While leading S and N operators are required, tailing S and N operators are optional.

For example, an D gene alignment that starts at position 419 in the query sequence
(leading 418S), that is 16 nucleotides long with no indels (middle 16M),
has an 10 nucleotide 5’ deletion (leading 10N), a 5 nucleotide 3’ deletion (trailing 5N),
and ends 72 nucleotides from the end of the query sequence (trailing 71S) would
have the following D gene CIGAR string (d_cigar) and positional information:

	Field

	Value

	d_cigar

	418S10N16M71S5N

	d_sequence_start

	419

	d_sequence_end

	434

	d_germline_start

	11

	d_germline_end

	26

Definition Clarifications

Junction versus CDR3

We work with the IMGT definitions of the junction and CDR3 regions. Specifically,
the IMGT JUNCTION includes the conserved cysteine and tryptophan/phenylalanine
residues, while CDR3 excludes those two residues. Therefore, our junction
and junction_aa fields which represent the extracted sequence include the two
conserved residues, while the coordinate fields (cdr3_start and cdr3_end)
exclude them.

Productive

The schema does not define a strict definition of a productive rearrangement.
However, the IMGT definition is recommended:

	Coding region has an open reading frame

	No defect in the start codon, splicing sites or regulatory elements.

	No internal stop codons.

	An in-frame junction region.

Locus names

A naming convention for locus names is not strictly enforced, but the IMGT
locus names are recommended. For example, in the case of human data, this would
be the set: IGH, IGK, IGL, TRA, TRB, TRD, or TRG.

Gene and allele names

Gene call examples use the IMGT nomenclature, but no specific gene or allele
nomenclature is strictly mandated. Species denotations may or may not be included in the
gene name, as appropriate. For example, “Homo sapiens IGHV4-59*01”, “IGHV4-59*01” and
“AB019438” are all valid entries for the same allele.

However, when using an established reference database to assign gene calls
adherence to the exact nomenclature used by the reference database is strongly
recommended, as this will facilitate mapping to the database entries, cross-study
comparison, and upload to public repositories.

Alignments

There is no required alignment scheme for the nucleotide and amino acid alignment
fields. These fields may, or may not, include numbering spacers (e.g., IMGT-numbering gaps),
variations in case to denote mismatches, deletions, or other features appropriate to the tool that
performed the alignment. The only strict requirement is that the query (“sequence”) and
reference (“germline”) must be properly aligned.

Fields

The specification includes two classes of fields. Those that are
required and those that are optional. Required is defined as a column
that must be present in the header of the TSV. Optional is defined as
column that may, or may not, appear in the TSV. All fields, including
required fields, are nullable by assigning an empty string as the
value. There are no requirements for column ordering in the schema,
although the Python and R reference APIs enforce ordering for the sake
of generating predictable output. The set of optional fields that
provide alignment and region coordinates (“_start” and “_end” fields)
are defined as 1- based closed intervals, similar to the SAM, VCF,
GFF, IMGT, and INDSC formats (GenBank, ENA, and DDJB;
http://www.insdc.org).

Most fields have strict definitions for the values that they
contain. However, some commonly provided information cannot be
standardized across diverse toolchains, so a small selection of fields
have context-dependent definitions. In particular, these
context-dependent fields include the optional “_score,” “_identity,”
and “_support” fields used for assessing the quality of alignments
which vary considerably in definition based on the methodology
used. Similarly, the “_alignment” fields require strict alignment
between the corresponding observed and germline sequences, but the
manner in which that alignment is conveyed is somewhat flexible in
that it allows for any numbering scheme (e.g., IMGT or KABAT) or lack
thereof.

By default, data elements representing sequences in the schema contain
nucleotide sequences except for data elements ending in “_aa,” which
are amino acid translations of the associated nucleotide sequence.

While the format contains an extensive list of reserved field names,
there are no restrictions on inclusion of custom fields in the TSV
file, provided such custom fields have a unique name. Furthermore,
suggestions for extending the format with additional reserved names
are welcomed through the issue tracker on the GitHub repository
(https://github.com/airr-community/airr-standards).

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequence_id

	string

	required, identifier, nullable

	Unique query sequence identifier for the Rearrangment. Most often this will be the input sequence header or a substring thereof, but may also be a custom identifier defined by the tool in cases where query sequences have been combined in some fashion prior to alignment. When downloaded from an AIRR Data Commons repository, this will usually be a universally unique record locator for linking with other objects in the AIRR Data Model.

	sequence

	string

	required, nullable

	The query nucleotide sequence. Usually, this is the unmodified input sequence, which may be reverse complemented if necessary. In some cases, this field may contain consensus sequences or other types of collapsed input sequences if these steps are performed prior to alignment.

	sequence_aa

	string

	optional, nullable

	Amino acid translation of the query nucleotide sequence.

	rev_comp

	boolean

	required, nullable

	True if the alignment is on the opposite strand (reverse complemented) with respect to the query sequence. If True then all output data, such as alignment coordinates and sequences, are based on the reverse complement of ‘sequence’.

	productive

	boolean

	required, nullable

	True if the V(D)J sequence is predicted to be productive.

	vj_in_frame

	boolean

	optional, nullable

	True if the V and J gene alignments are in-frame.

	stop_codon

	boolean

	optional, nullable

	True if the aligned sequence contains a stop codon.

	complete_vdj

	boolean

	optional, nullable

	True if the sequence alignment spans the entire V(D)J region. Meaning, sequence_alignment includes both the first V gene codon that encodes the mature polypeptide chain (i.e., after the leader sequence) and the last complete codon of the J gene (i.e., before the J-C splice site). This does not require an absence of deletions within the internal FWR and CDR regions of the alignment.

	locus

	string

	optional, nullable

	Gene locus (chain type). Note that this field uses a controlled vocabulary that is meant to provide a generic classification of the locus, not necessarily the correct designation according to a specific nomenclature.

	v_call

	string

	required, nullable

	V gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHV4-59*01 if using IMGT/GENE-DB).

	d_call

	string

	required, nullable

	First or only D gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHD3-10*01 if using IMGT/GENE-DB).

	d2_call

	string

	optional, nullable

	Second D gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHD3-10*01 if using IMGT/GENE-DB).

	j_call

	string

	required, nullable

	J gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHJ4*02 if using IMGT/GENE-DB).

	c_call

	string

	optional, nullable

	Constant region gene with allele. If referring to a known reference sequence in a database the relevant gene/allele nomenclature should be followed (e.g., IGHG1*01 if using IMGT/GENE-DB).

	sequence_alignment

	string

	required, nullable

	Aligned portion of query sequence, including any indel corrections or numbering spacers, such as IMGT-gaps. Typically, this will include only the V(D)J region, but that is not a requirement.

	sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the aligned query sequence.

	germline_alignment

	string

	required, nullable

	Assembled, aligned, full-length inferred germline sequence spanning the same region as the sequence_alignment field (typically the V(D)J region) and including the same set of corrections and spacers (if any).

	germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the assembled germline sequence.

	junction

	string

	required, nullable

	Junction region nucleotide sequence, where the junction is defined as the CDR3 plus the two flanking conserved codons.

	junction_aa

	string

	required, nullable

	Amino acid translation of the junction.

	np1

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between the V gene and first D gene alignment or between the V gene and J gene alignments.

	np1_aa

	string

	optional, nullable

	Amino acid translation of the np1 field.

	np2

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between either the first D gene and J gene alignments or the first D gene and second D gene alignments.

	np2_aa

	string

	optional, nullable

	Amino acid translation of the np2 field.

	np3

	string

	optional, nullable

	Nucleotide sequence of the combined N/P region between the second D gene and J gene alignments.

	np3_aa

	string

	optional, nullable

	Amino acid translation of the np3 field.

	cdr1

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR1 region.

	cdr1_aa

	string

	optional, nullable

	Amino acid translation of the cdr1 field.

	cdr2

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR2 region.

	cdr2_aa

	string

	optional, nullable

	Amino acid translation of the cdr2 field.

	cdr3

	string

	optional, nullable

	Nucleotide sequence of the aligned CDR3 region.

	cdr3_aa

	string

	optional, nullable

	Amino acid translation of the cdr3 field.

	fwr1

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR1 region.

	fwr1_aa

	string

	optional, nullable

	Amino acid translation of the fwr1 field.

	fwr2

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR2 region.

	fwr2_aa

	string

	optional, nullable

	Amino acid translation of the fwr2 field.

	fwr3

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR3 region.

	fwr3_aa

	string

	optional, nullable

	Amino acid translation of the fwr3 field.

	fwr4

	string

	optional, nullable

	Nucleotide sequence of the aligned FWR4 region.

	fwr4_aa

	string

	optional, nullable

	Amino acid translation of the fwr4 field.

	v_score

	number

	optional, nullable

	Alignment score for the V gene.

	v_identity

	number

	optional, nullable

	Fractional identity for the V gene alignment.

	v_support

	number

	optional, nullable

	V gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the V gene assignment as defined by the alignment tool.

	v_cigar

	string

	required, nullable

	CIGAR string for the V gene alignment.

	d_score

	number

	optional, nullable

	Alignment score for the first or only D gene alignment.

	d_identity

	number

	optional, nullable

	Fractional identity for the first or only D gene alignment.

	d_support

	number

	optional, nullable

	D gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the first or only D gene as defined by the alignment tool.

	d_cigar

	string

	required, nullable

	CIGAR string for the first or only D gene alignment.

	d2_score

	number

	optional, nullable

	Alignment score for the second D gene alignment.

	d2_identity

	number

	optional, nullable

	Fractional identity for the second D gene alignment.

	d2_support

	number

	optional, nullable

	D gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the second D gene as defined by the alignment tool.

	d2_cigar

	string

	optional, nullable

	CIGAR string for the second D gene alignment.

	j_score

	number

	optional, nullable

	Alignment score for the J gene alignment.

	j_identity

	number

	optional, nullable

	Fractional identity for the J gene alignment.

	j_support

	number

	optional, nullable

	J gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the J gene assignment as defined by the alignment tool.

	j_cigar

	string

	required, nullable

	CIGAR string for the J gene alignment.

	c_score

	number

	optional, nullable

	Alignment score for the C gene alignment.

	c_identity

	number

	optional, nullable

	Fractional identity for the C gene alignment.

	c_support

	number

	optional, nullable

	C gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the C gene assignment as defined by the alignment tool.

	c_cigar

	string

	optional, nullable

	CIGAR string for the C gene alignment.

	v_sequence_start

	integer

	optional, nullable

	Start position of the V gene in the query sequence (1-based closed interval).

	v_sequence_end

	integer

	optional, nullable

	End position of the V gene in the query sequence (1-based closed interval).

	v_germline_start

	integer

	optional, nullable

	Alignment start position in the V gene reference sequence (1-based closed interval).

	v_germline_end

	integer

	optional, nullable

	Alignment end position in the V gene reference sequence (1-based closed interval).

	v_alignment_start

	integer

	optional, nullable

	Start position of the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	v_alignment_end

	integer

	optional, nullable

	End position of the V gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_sequence_start

	integer

	optional, nullable

	Start position of the first or only D gene in the query sequence. (1-based closed interval).

	d_sequence_end

	integer

	optional, nullable

	End position of the first or only D gene in the query sequence. (1-based closed interval).

	d_germline_start

	integer

	optional, nullable

	Alignment start position in the D gene reference sequence for the first or only D gene (1-based closed interval).

	d_germline_end

	integer

	optional, nullable

	Alignment end position in the D gene reference sequence for the first or only D gene (1-based closed interval).

	d_alignment_start

	integer

	optional, nullable

	Start position of the first or only D gene in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d_alignment_end

	integer

	optional, nullable

	End position of the first or only D gene in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d2_sequence_start

	integer

	optional, nullable

	Start position of the second D gene in the query sequence (1-based closed interval).

	d2_sequence_end

	integer

	optional, nullable

	End position of the second D gene in the query sequence (1-based closed interval).

	d2_germline_start

	integer

	optional, nullable

	Alignment start position in the second D gene reference sequence (1-based closed interval).

	d2_germline_end

	integer

	optional, nullable

	Alignment end position in the second D gene reference sequence (1-based closed interval).

	d2_alignment_start

	integer

	optional, nullable

	Start position of the second D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	d2_alignment_end

	integer

	optional, nullable

	End position of the second D gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_sequence_start

	integer

	optional, nullable

	Start position of the J gene in the query sequence (1-based closed interval).

	j_sequence_end

	integer

	optional, nullable

	End position of the J gene in the query sequence (1-based closed interval).

	j_germline_start

	integer

	optional, nullable

	Alignment start position in the J gene reference sequence (1-based closed interval).

	j_germline_end

	integer

	optional, nullable

	Alignment end position in the J gene reference sequence (1-based closed interval).

	j_alignment_start

	integer

	optional, nullable

	Start position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	j_alignment_end

	integer

	optional, nullable

	End position of the J gene alignment in both the sequence_alignment and germline_alignment fields (1-based closed interval).

	cdr1_start

	integer

	optional, nullable

	CDR1 start position in the query sequence (1-based closed interval).

	cdr1_end

	integer

	optional, nullable

	CDR1 end position in the query sequence (1-based closed interval).

	cdr2_start

	integer

	optional, nullable

	CDR2 start position in the query sequence (1-based closed interval).

	cdr2_end

	integer

	optional, nullable

	CDR2 end position in the query sequence (1-based closed interval).

	cdr3_start

	integer

	optional, nullable

	CDR3 start position in the query sequence (1-based closed interval).

	cdr3_end

	integer

	optional, nullable

	CDR3 end position in the query sequence (1-based closed interval).

	fwr1_start

	integer

	optional, nullable

	FWR1 start position in the query sequence (1-based closed interval).

	fwr1_end

	integer

	optional, nullable

	FWR1 end position in the query sequence (1-based closed interval).

	fwr2_start

	integer

	optional, nullable

	FWR2 start position in the query sequence (1-based closed interval).

	fwr2_end

	integer

	optional, nullable

	FWR2 end position in the query sequence (1-based closed interval).

	fwr3_start

	integer

	optional, nullable

	FWR3 start position in the query sequence (1-based closed interval).

	fwr3_end

	integer

	optional, nullable

	FWR3 end position in the query sequence (1-based closed interval).

	fwr4_start

	integer

	optional, nullable

	FWR4 start position in the query sequence (1-based closed interval).

	fwr4_end

	integer

	optional, nullable

	FWR4 end position in the query sequence (1-based closed interval).

	v_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the V gene, including any indel corrections or numbering spacers.

	v_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the v_sequence_alignment field.

	d_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the first or only D gene, including any indel corrections or numbering spacers.

	d_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d_sequence_alignment field.

	d2_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the second D gene, including any indel corrections or numbering spacers.

	d2_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d2_sequence_alignment field.

	j_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the J gene, including any indel corrections or numbering spacers.

	j_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the j_sequence_alignment field.

	c_sequence_alignment

	string

	optional, nullable

	Aligned portion of query sequence assigned to the constant region, including any indel corrections or numbering spacers.

	c_sequence_alignment_aa

	string

	optional, nullable

	Amino acid translation of the c_sequence_alignment field.

	v_germline_alignment

	string

	optional, nullable

	Aligned V gene germline sequence spanning the same region as the v_sequence_alignment field and including the same set of corrections and spacers (if any).

	v_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the v_germline_alignment field.

	d_germline_alignment

	string

	optional, nullable

	Aligned D gene germline sequence spanning the same region as the d_sequence_alignment field and including the same set of corrections and spacers (if any).

	d_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d_germline_alignment field.

	d2_germline_alignment

	string

	optional, nullable

	Aligned D gene germline sequence spanning the same region as the d2_sequence_alignment field and including the same set of corrections and spacers (if any).

	d2_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the d2_germline_alignment field.

	j_germline_alignment

	string

	optional, nullable

	Aligned J gene germline sequence spanning the same region as the j_sequence_alignment field and including the same set of corrections and spacers (if any).

	j_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the j_germline_alignment field.

	c_germline_alignment

	string

	optional, nullable

	Aligned constant region germline sequence spanning the same region as the c_sequence_alignment field and including the same set of corrections and spacers (if any).

	c_germline_alignment_aa

	string

	optional, nullable

	Amino acid translation of the c_germline_aligment field.

	junction_length

	integer

	optional, nullable

	Number of nucleotides in the junction sequence.

	junction_aa_length

	integer

	optional, nullable

	Number of amino acids in the junction sequence.

	np1_length

	integer

	optional, nullable

	Number of nucleotides between the V gene and first D gene alignments or between the V gene and J gene alignments.

	np2_length

	integer

	optional, nullable

	Number of nucleotides between either the first D gene and J gene alignments or the first D gene and second D gene alignments.

	np3_length

	integer

	optional, nullable

	Number of nucleotides between the second D gene and J gene alignments.

	n1_length

	integer

	optional, nullable

	Number of untemplated nucleotides 5’ of the first or only D gene alignment.

	n2_length

	integer

	optional, nullable

	Number of untemplated nucleotides 3’ of the first or only D gene alignment.

	n3_length

	integer

	optional, nullable

	Number of untemplated nucleotides 3’ of the second D gene alignment.

	p3v_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the V gene alignment.

	p5d_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the first or only D gene alignment.

	p3d_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the first or only D gene alignment.

	p5d2_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the second D gene alignment.

	p3d2_length

	integer

	optional, nullable

	Number of palindromic nucleotides 3’ of the second D gene alignment.

	p5j_length

	integer

	optional, nullable

	Number of palindromic nucleotides 5’ of the J gene alignment.

	consensus_count

	integer

	optional, nullable

	Number of reads contributing to the (UMI) consensus for this sequence. For example, the sum of the number of reads for all UMIs that contribute to the query sequence.

	duplicate_count

	integer

	optional, nullable

	Copy number or number of duplicate observations for the query sequence. For example, the number of UMIs sharing an identical sequence or the number of identical observations of this sequence absent UMIs.

	cell_id

	string

	optional, identifier, nullable

	Identifier defining the cell of origin for the query sequence.

	clone_id

	string

	optional, identifier, nullable

	Clonal cluster assignment for the query sequence.

	repertoire_id

	string

	optional, identifier, nullable

	Identifier to the associated repertoire in study metadata.

	sample_processing_id

	string

	optional, identifier, nullable

	Identifier to the sample processing object in the repertoire metadata for this rearrangement. If the repertoire has a single sample then this field may be empty or missing. If the repertoire has multiple samples then this field may be empty or missing if the sample cannot be differentiated or the relationship is not maintained by the data processing.

	data_processing_id

	string

	optional, identifier, nullable

	Identifier to the data processing object in the repertoire metadata for this rearrangement. If this field is empty than the primary data processing object is assumed.

	rearrangement_id

	string

	DEPRECATED

	Identifier for the Rearrangement object. May be identical to sequence_id, but will usually be a univerally unique record locator for database applications.

	rearrangement_set_id

	string

	DEPRECATED

	Identifier for grouping Rearrangement objects.

	germline_database

	string

	DEPRECATED

	Source of germline V(D)J genes with version number or date accessed.

Repertoire Schema

A Repertoire is an abstract organizational unit of analysis that
is defined by the researcher and consists of study metadata, subject
metadata, sample metadata, cell processing metadata, nucleic acid
processing metadata, sequencing run metadata, a set of raw sequence
files, data processing metadata, and a set of Rearrangements. A
Repertoire gathers all of this information together into a
composite object, which can be easily accessed by computer programs
for data entry, analysis and visualization.

A Repertoire is specific to a single subject otherwise it can
consist of any number of samples (which can be processed in different
ways), any number of raw sequence files, and any number of
rearrangements. It can also consist of any number of data processing
metadata objects that describe the processing of raw sequence files
into Rearrangements.

Typically, a Repertoire corresponds to the biological concept of
the immune repertoire for that single subject which the researcher
experimentally measures and computationally analyzes. However,
researchers can have different interpretations about what constitutes
the biological immune repertoire; therefore, the Repertoire schema
attempts to be flexible and broadly useful for all AIRR-seq studies.

Another researcher can take the same raw sequencing data and
associated metadata and create their own Repertoire that is
different from the original researcher’s. A common example is to
define a repertoire that is a subset such as “productive
rearrangements for IGHV4” whereas the original researcher defined a
more generic “B cell repertoire”. This new Repertoire would have
much of the same metadata as the original Repertoire, except
associated with a different study, and with additional information in
the data processing metadata that describes how the rearrangements
were filtered down to just the “productive rearrangements for
IGHV4”. Likewise, another researcher may get access to the original
biosample material and perform their own sample processing and
sequencing, which also would be a new Repertoire. That new
Repertoire could combine samples from the original researcher’s
Repertoire with the new sample data as a large dataset for the
subject.

Multiple Data Processing on a Repertoire

Data processing can be a complicated multi-stage
process. Documenting the process in a formal way is challenging
because of the diversity of actions that may be performed. The MiAIRR
standard requires documentation of the process but in an informal way
with free text descriptions. A Repertoire might undergo multiple
different data processing for any number of reasons, e.g. to
compare the results from different toolchains, or to compare different
settings for the same toolchain.

It is expected that all of the Samples of a Repertoire will be
processed together within a DataProcessing. That is, a
DataProcessing that only uses some but not all samples in a
Repertoire could be confusing to users and appear as though data
is missing. Likewise, processing some samples within a Repertoire
with one DataProcessing and the remaining samples with a
different DataProcessing could also confuse users. Because
DataProcessing is unstructured information, it is not possible
to validate that all Samples in a Repertoire are being
processed together, so this expectation cannot be strictly
enforced.

Having multiple DataProcessing for a Repertoire will
create multiple sets of Rearrangements that are distinct and
separate from each other. Analysis tools need to be careful not to mix
these sets of Rearrangements from different DataProcessing
because it can generate incorrect results. The identifier
data_processing_id was added so Rearrangements can
identify their specific DataProcessing.

Linking Data

Each Repertoire has a unique repertoire_id identifier. This
identifier should be globally unique so that repertoires from multiple
studies can be combined together without conflict. The
repertoire_id is used to link other AIRR data to a
Repertoire. Specifically, the Rearrangements Schema includes repertoire_id for referencing the
specific Repertoire for that Rearrangement.

If a Repertoire has multiple DataProcessing then
data_processing_id should be used to distinguish the
appropriate DataProcessing within the Repertoire. The
Rearrangements contains data_processing_id for this
purpose. The data_processing_id is only unique within a
Repertoire so repertoire_id should first be used to get the
appropriate Repertoire object and then data_processing_id
used to acquire the appropriate DataProcessing.

It is expected that typical Repertoires might only have a single
DataProcessing, in which case repertoire_id and
data_processing_id will be semantically equivalent and only the
former should be used.

If a Repertoire has multiple sample processing objects in the sample
array then sample_processing_id should be used to distinguish the
the approrpiate sample processing object within the Repertoire. The
Rearrangement object can contain a sample_processing_id to uniquely
identify a sample processing object within a Repertoire. Like
data_processing_id, the sample_processing_id is only unique within
the Repertoire so repertoire_id should first be used to get the
appropiate Repertoire object and then sample_processing_id should
be used to determine the appropiate sample processing object that is associated
with the Rearrangement. If the Rearrangement object does not have a
sample_processing_id then it can be assumed that the rearrangement is
associated with all of the samples in the Repertoire (e.g. the rearrangement
is a collapsed rearrangement across multiple samples).

It is expected that Repertoires might often have a single
sample processing object, in which case repertoire_id and
sample_processing_id will be semantically equivalent and only the
former should be used.

Finally, if it is necessary to link a Rearrangement object with a unique
pairing of sample processing and DataProcessing, the repertoire_id of
the Rearrangement object should be used to identify the correct Repertoire
object and then the data_processing_id should be used to identify the correct
DataProcessing metadata and the sample_processing_id should be used to
identify the correct sample processing metadata within that Repertoire.

Duality between Repertoires and Rearrangements

There is an important duality relationship between Repertoires and
Rearrangements, specifically with the experimental protocols
described in the Repertoire versus the annotations on
Rearrangements. A Repertoire defines an experimental design
for what a researcher intends to measure or observe, while the
Rearrangements are what was actually measured and
observed. Technically, the border between the two occurs at
sequencing, that is when the biological physical entity (prepared DNA)
is measured and recorded as information (nucleotide sequence).

This duality is important when considering how to answer certain
questions. For example, locus for Rearrangements may have the
value “IGH” which indicates that B cell heavy chain receptors were
measured, yet the Repertoire might have “T cell” in
cell_subset which indicates the researcher intended to measure T
cells. This conflict between the two indicates something is
wrong. Differences can occur in many ways, as with errors in the
experimental protocol, or data processing might have incorrectly
processed the raw sequencing data leading to invalid annotations.

File Format Specification

Files are YAML/JSON with a structure defined below. Files should be
encoded as UTF-8. Identifiers are case-sensitive. Files should have the
extension .yaml, .yml, or .json.

File Structure

	The file as a whole is considered a dictionary (key/value pair) structure with the keys Info and Repertoire.

	The file can (optionally) contain an Info object, at the beginning of the file, based upon the Info schema in the OpenAPI V2 specification. If provided, version in Info should reference the version of the AIRR schema for the file.

	The file should correspond to a list of Repertoire objects, using Repertoire as the key to the list.

	Each Repertoire object should contain a top-level key/value pair for repertoire_id that uniquely identifies the repertoire.

	Some fields require the use of a particular ontology or controlled vocabulary.

	The structure is the same regardless of whether the data is stored in a file or a data repository. For example, The ADC API will return a properly structured JSON object that can be saved to a file and used directly without modification.

Repertoire Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	repertoire_id

	string

	optional, identifier, nullable

	Identifier for the repertoire object. This identifier should be globally unique so that repertoires from multiple studies can be combined together without conflict. The repertoire_id is used to link other AIRR data to a Repertoire. Specifically, the Rearrangements Schema includes repertoire_id for referencing the specific Repertoire for that Rearrangement.

	repertoire_name

	string

	optional, nullable

	Short generic display name for the repertoire

	repertoire_description

	string

	optional, nullable

	Generic repertoire description

	study

	Study

	required

	Study object

	subject

	Subject

	required

	Subject object

	sample

	array

	required

	List of Sample objects

	data_processing

	array of DataProcessing

	required

	List of Data Processing objects

Study Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	study_id

	string

	required, nullable

	Unique ID assigned by study registry

	study_title

	string

	required, nullable

	Descriptive study title

	study_type

	Ontology

	required, nullable

	Type of study design

	study_description

	string

	optional, nullable

	Generic study description

	inclusion_exclusion_criteria

	string

	required, nullable

	List of criteria for inclusion/exclusion for the study

	grants

	string

	required, nullable

	Funding agencies and grant numbers

	collected_by

	string

	required, nullable

	Full contact information of the data collector, i.e. the person who is legally responsible for data collection and release. This should include an e-mail address.

	lab_name

	string

	required, nullable

	Department of data collector

	lab_address

	string

	required, nullable

	Institution and institutional address of data collector

	submitted_by

	string

	required, nullable

	Full contact information of the data depositor, i.e. the person submitting the data to a repository. This is supposed to be a short-lived and technical role until the submission is relased.

	pub_ids

	string

	required, nullable

	Publications describing the rationale and/or outcome of the study

	keywords_study

	array of string

	required, nullable

	Keywords describing properties of one or more data sets in a study

Subject Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	subject_id

	string

	required, nullable

	Subject ID assigned by submitter, unique within study

	synthetic

	boolean

	required

	TRUE for libraries in which the diversity has been synthetically generated (e.g. phage display)

	species

	Ontology

	required

	Binomial designation of subject’s species

	organism

	Ontology

	DEPRECATED

	Binomial designation of subject’s species

	sex

	string

	required, nullable

	Biological sex of subject

	age_min

	number

	required, nullable

	Specific age or lower boundary of age range.

	age_max

	number

	required, nullable

	Upper boundary of age range or equal to age_min for specific age. This field should only be null if age_min is null.

	age_unit

	Ontology

	required, nullable

	Unit of age range

	age_event

	string

	required, nullable

	Event in the study schedule to which Age refers. For NCBI BioSample this MUST be sampling. For other implementations submitters need to be aware that there is currently no mechanism to encode to potential delta between Age event and Sample collection time, hence the chosen events should be in temporal proximity.

	age

	string

	DEPRECATED

	

	ancestry_population

	string

	required, nullable

	Broad geographic origin of ancestry (continent)

	ethnicity

	string

	required, nullable

	Ethnic group of subject (defined as cultural/language-based membership)

	race

	string

	required, nullable

	Racial group of subject (as defined by NIH)

	strain_name

	string

	required, nullable

	Non-human designation of the strain or breed of animal used

	linked_subjects

	string

	required, nullable

	Subject ID to which Relation type refers

	link_type

	string

	required, nullable

	Relation between subject and linked_subjects, can be genetic or environmental (e.g.exposure)

	diagnosis

	array of Diagnosis

	optional

	Diagnosis information for subject

Diagnosis Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	study_group_description

	string

	required, nullable

	Designation of study arm to which the subject is assigned to

	disease_diagnosis

	Ontology

	required, nullable

	Diagnosis of subject

	disease_length

	string

	required, nullable

	Time duration between initial diagnosis and current intervention

	disease_stage

	string

	required, nullable

	Stage of disease at current intervention

	prior_therapies

	string

	required, nullable

	List of all relevant previous therapies applied to subject for treatment of Diagnosis

	immunogen

	string

	required, nullable

	Antigen, vaccine or drug applied to subject at this intervention

	intervention

	string

	required, nullable

	Description of intervention

	medical_history

	string

	required, nullable

	Medical history of subject that is relevant to assess the course of disease and/or treatment

Sample Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sample_id

	string

	required, nullable

	Sample ID assigned by submitter, unique within study

	sample_type

	string

	required, nullable

	The way the sample was obtained, e.g. fine-needle aspirate, organ harvest, peripheral venous puncture

	tissue

	Ontology

	required, nullable

	The actual tissue sampled, e.g. lymph node, liver, peripheral blood

	anatomic_site

	string

	required, nullable

	The anatomic location of the tissue, e.g. Inguinal, femur

	disease_state_sample

	string

	required, nullable

	Histopathologic evaluation of the sample

	collection_time_point_relative

	string

	required, nullable

	Time point at which sample was taken, relative to Collection time event

	collection_time_point_reference

	string

	required, nullable

	Event in the study schedule to which Sample collection time relates to

	biomaterial_provider

	string

	required, nullable

	Name and address of the entity providing the sample

Tissue and Cell Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	tissue_processing

	string

	required, nullable

	Enzymatic digestion and/or physical methods used to isolate cells from sample

	cell_subset

	Ontology

	required, nullable

	Commonly-used designation of isolated cell population

	cell_phenotype

	string

	required, nullable

	List of cellular markers and their expression levels used to isolate the cell population

	cell_species

	Ontology

	optional, nullable

	Binomial designation of the species from which the analyzed cells originate. Typically, this value should be identical to species, if which case it SHOULD NOT be set explicitly. Howver, there are valid experimental setups in which the two might differ, e.g. chimeric animal models. If set, this key will overwrite the species information for all lower layers of the schema.

	single_cell

	boolean

	required, nullable

	TRUE if single cells were isolated into separate compartments

	cell_number

	integer

	required, nullable

	Total number of cells that went into the experiment

	cells_per_reaction

	integer

	required, nullable

	Number of cells for each biological replicate

	cell_storage

	boolean

	required, nullable

	TRUE if cells were cryo-preserved between isolation and further processing

	cell_quality

	string

	required, nullable

	Relative amount of viable cells after preparation and (if applicable) thawing

	cell_isolation

	string

	required, nullable

	Description of the procedure used for marker-based isolation or enrich cells

	cell_processing_protocol

	string

	required, nullable

	Description of the methods applied to the sample including cell preparation/ isolation/enrichment and nucleic acid extraction. This should closely mirror the Materials and methods section in the manuscript.

Nucleic Acid Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	template_class

	string

	required

	The class of nucleic acid that was used as primary starting material for the following procedures

	template_quality

	string

	required, nullable

	Description and results of the quality control performed on the template material

	template_amount

	string

	required, nullable

	Amount of template that went into the process

	library_generation_method

	string

	required

	Generic type of library generation

	library_generation_protocol

	string

	required, nullable

	Description of processes applied to substrate to obtain a library that is ready for sequencing

	library_generation_kit_version

	string

	required, nullable

	When using a library generation protocol from a commercial provider, provide the protocol version number

	pcr_target

	array of PCRTarget

	optional

	If a PCR step was performed that specifically targets the IG/TR loci, the target and primer locations need to be provided here. This field holds an array of PCRTarget objects, so that multiplex PCR setups amplifying multiple loci at the same time can be annotated using one record per locus. PCR setups not targeting any specific locus must not annotate this field but select the appropriate library_generation_method instead.

	complete_sequences

	string

	required

	To be considered complete, the procedure used for library construction MUST generate sequences that 1) include the first V gene codon that encodes the mature polypeptide chain (i.e. after the leader sequence) and 2) include the last complete codon of the J gene (i.e. 1 bp 5’ of the J->C splice site) and 3) provide sequence information for all positions between 1) and 2). To be considered complete & untemplated, the sections of the sequences defined in points 1) to 3) of the previous sentence MUST be untemplated, i.e. MUST NOT overlap with the primers used in library preparation. mixed should only be used if the procedure used for library construction will likely produce multiple categories of sequences in the given experiment. It SHOULD NOT be used as a replacement of a NULL value.

	physical_linkage

	string

	required

	In case an experimental setup is used that physically links nucleic acids derived from distinct Rearrangements before library preparation, this field describes the mode of that linkage. All hetero_* terms indicate that in case of paired-read sequencing, the two reads should be expected to map to distinct IG/TR loci. *_head-head refers to techniques that link the 5’ ends of transcripts in a single-cell context. *_tail-head refers to techniques that link the 3’ end of one transcript to the 5’ end of another one in a single-cell context. This term does not provide any information whether a continuous reading-frame between the two is generated. *_prelinked refers to constructs in which the linkage was already present on the DNA level (e.g. scFv).

PCR Target Locus Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	pcr_target_locus

	string

	required, nullable

	Designation of the target locus. Note that this field uses a controlled vocubulary that is meant to provide a generic classification of the locus, not necessarily the correct designation according to a specific nomenclature.

	forward_pcr_primer_target_location

	string

	required, nullable

	Position of the most distal nucleotide templated by the forward primer or primer mix

	reverse_pcr_primer_target_location

	string

	required, nullable

	Position of the most proximal nucleotide templated by the reverse primer or primer mix

Raw Sequence Data Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	file_type

	string

	required, nullable

	File format for the raw reads or sequences

	filename

	string

	required, nullable

	File name for the raw reads or sequences. The first file in paired-read sequencing.

	read_direction

	string

	required, nullable

	Read direction for the raw reads or sequences. The first file in paired-read sequencing.

	read_length

	integer

	required, nullable

	Read length in bases for the first file in paired-read sequencing

	paired_filename

	string

	required, nullable

	File name for the second file in paired-read sequencing

	paired_read_direction

	string

	required, nullable

	Read direction for the second file in paired-read sequencing

	paired_read_length

	integer

	required, nullable

	Read length in bases for the second file in paired-read sequencing

Sequencing Run Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	sequencing_run_id

	string

	required, nullable

	ID of sequencing run assigned by the sequencing facility

	total_reads_passing_qc_filter

	integer

	required, nullable

	Number of usable reads for analysis

	sequencing_platform

	string

	required, nullable

	Designation of sequencing instrument used

	sequencing_facility

	string

	required, nullable

	Name and address of sequencing facility

	sequencing_run_date

	string

	required, nullable

	Date of sequencing run

	sequencing_kit

	string

	required, nullable

	Name, manufacturer, order and lot numbers of sequencing kit

	sequencing_files

	RawSequenceData

	optional

	Set of sequencing files produced by the sequencing run

Data Processing Fields

Download as TSV

	Name

	Type

	Attributes

	Definition

	data_processing_id

	string

	optional, identifier, nullable

	Identifier for the data processing object.

	primary_annotation

	boolean

	optional, identifier

	If true, indicates this is the primary or default data processing for the repertoire and its rearrangments. If false, indicates this is a secondary or additional data processing.

	software_versions

	string

	required, nullable

	Version number and / or date, include company pipelines

	paired_reads_assembly

	string

	required, nullable

	How paired end reads were assembled into a single receptor sequence

	quality_thresholds

	string

	required, nullable

	How sequences were removed from (4) based on base quality scores

	primer_match_cutoffs

	string

	required, nullable

	How primers were identified in the sequences, were they removed/masked/etc?

	collapsing_method

	string

	required, nullable

	The method used for combining multiple sequences from (4) into a single sequence in (5)

	data_processing_protocols

	string

	required, nullable

	General description of how QC is performed

	data_processing_files

	array of string

	optional, nullable

	Array of file names for data produced by this data processing.

	germline_database

	string

	required, nullable

	Source of germline V(D)J genes with version number or date accessed.

	analysis_provenance_id

	string

	optional, nullable

	Identifier for machine-readable PROV model of analysis provenance

AIRR Software WG - Guidance for AIRR Software Tools

Version 1.0

Table of Contents

	Compliance Checklist for AIRR Software Tools

	List of Compliant Tools

	Recommended Software Evaluation Data Sets

Introduction

The Adaptive Immune Receptor Repertoire (AIRR) Community [http://airr-community.org/] will benefit
greatly from cooperation among groups developing software tools and
resources for AIRR research. The goal of the AIRR Software Working Group [https://www.antibodysociety.org/airrc/working_groups/software/]
is to promote standards for AIRR software tools and resources in order
to enable rigorous and reproducible immune repertoire research at the
largest scale possible. As one contribution to this goal, we have
established the following standards for software tools. Authors whose
tools comply with this standard will, subject to ratification from the
AIRR Software WG, be permitted to advertise their tools as being
AIRR-compliant.

Requirements

Tools must:

	Be published in source code form, and hosted on a publicly available
repository with a clear versioning system.

	Support community-curated standard file formats and strive for
modularity and interoperability with other tools. In particular,
tools must read and write AIRR Data Representations standards corresponding to their tool.

	Include example data (in AIRR standard formats where applicable) and
an automated check for expected output from that data, in order to provide a
minimal example of functionality allowing users to check that the
software is performing as described.

	Provide information about run parameters as part of the output.

	Provide a container build file that can be used to create an image
which encapsulates the software tool, its dependencies, and
required run environment. This needs to be remotely and
automatically built. The build should conclude by running the
example data through the tool (see point 3) and confirming that
the expected output is obtained. We currently recognize two software
solutions, although we will adapt as software evolves:

	A Dockerfile [https://docs.docker.com/engine/reference/builder/] that automatically builds a container
image [https://docs.docker.com/docker-hub/builds/] on Docker Hub [https://docs.docker.com/docker-hub/].

	A Singularity recipe file [https://www.sylabs.io/docs/] that automatically builds a container image [https://github.com/singularityhub/singularityhub.github.io/wiki/Automated-Build]
on Singularity Hub [https://singularity-hub.org/].

	Provide user support, clearly stating which level of support users
can expect, and how and from whom to obtain it.

Recommendations

We suggest software tools be published under a license that permits free
access, use, modification, and sharing, such as GPL, Apache 2.0, or MIT.
However, we understand that this depends on institutional intellectual property
restrictions, thus it is a recommendation rather than a requirement.

Explanatory Notes

Open Source Software and Versioned Repositories

Software tools in the AIRR field are evolving rapidly. In the interests
of reproducibility and transparency, published work should be based on
tools (and versions of tools) that can be obtained easily by other
researchers in the future. To that end, AIRR compliant tools must be
published in open repositories such as GitHub [https://github.com] or Bitbucket [https://bitbucket.org], and we
encourage publishing users to provide specifics on the version and
configuration of tools that have been employed.

Community-Curated File Formats

The AIRR Data Representation Working Group has defined standards for
immune receptor repertoire sequencing datasets. Software tool authors
are requested to support these standards as much as possible, for
applicable data sets. The currently implemented standard covers
submission of reads to NCBI repositories (BioProject, BioSample, SRA and
Genbank) and annotated immune receptor rearrangements. Tool authors can
assist by easing/guiding the process of submission as much as possible.

Example Data and Checks

Because the installation and operation of the tools in this field may be
complex, we require example data and details of expected output, so that
users can confirm that their installation is functioning as expected.
Furthermore, metadata (for example, germline gene libraries) and
other software dependencies should be checked when the tool runs, and
informative error messages issued if necessary. A means should be provided
to check the expected output automatically.

Dependencies and Containers

Containers encapsulate everything needed to run a piece of software into
a single convenient executable that is largely independent of the user’s
software environment. For the following purposes, providers of
AIRR-compliant tools must provide a containerized implementation (based
on a published build script as described above) as one download option
that users can choose:

	Containers allow users to use and evaluate a tool easily and
reproduce results, without the need to resolve dependencies or
configure the environment.

	Having these containers be automatically built also provides a
self-validated way to understand the fine details of installation
from a known starting point.

To ensure that containers are up to date, they must be built
automatically when the current release version of the tool is updated.
We will use automated builds on Docker Hub and Singularity Hub for this
purpose. The corresponding build files document dependencies clearly,
and make it easy for the maintainer to keep the container’s dependencies
up to date in subsequent releases.

An example Docker container is provided on the Software WG
Github Repository [https://github.com/airr-community/software-wg]. This example encapsulates IgBLAST [https://www.ncbi.nlm.nih.gov/igblast/],
and implements the bioboxes [http://bioboxes.org] command-line standard.

Support Statements

Tool authors must provide support for the tool. They must state
explicitly what level of support is provided, and explain how support
can be obtained. We recommend a method such as the issues tracker on
Github, that publishes support requests transparently and links
resolutions to specific versions or releases. Users are advised to check
that the level of support and the frequency of software updates matches
their expectations before committing to a tool.

Analysis Workflows

	At the moment, we do not endorse a specific workflow technology
standard:

	Technology is evolving too rapidly for us to commit to a
particular workflow.

	Typically, AIRR analysis tools have many options and modes, which
would make it difficult to support a “plug and play”
environment without unduly restricting functionality.

	As tools and workflows evolve, we will keep the position under review
and may make stronger technology recommendations in the future.

	We strongly encourage authors of tools to provide concrete,
documented, examples of workflows that employ their tools,
together with sample input and output data.

	
	Likewise we encourage authors of research publications to provide

	documented workflows that will enable interested readers to
reproduce the results.

Ratification

Authors may submit tools to the AIRR Software WG requesting ratification
against the standard. The submitter should provide a completed copy
of the AIRR Software WG - Compliance Checklist for AIRR Software Tools to evidence reviewable and itemised evidence
of compliance with each Requirement listed above.

The Software WG will, where appropriate, issue a Certificate of
Compliance, stating the version of the tool reviewed and the version of
the Standard with which compliance was ratified. After receiving a
Certificate, authors will be entitled to claim compliance with the
Standard, and may incorporate any artwork provided by AIRR for that
purpose.

The Software WG will maintain and publish a list of compliant software.

If a tool does not achieve ratification, the Software WG will provide an
explanation. The Software WG encourages resubmission once issues have
been resolved.

Authors must re-submit tools for ratification following major upgrades
or substantial modifications. The Software WG may, at its discretion,
request resubmission at any time. If a certified tool subsequently fails
ratification, or is not re-submitted in response to a request from the
Software WG, AIRR compliance may no longer be claimed and the associated
artwork may no longer be used.

The Software WG may, at its discretion, issue a new version of this
standard at any time. Tools certified against previous version(s) of the
standard may continue to claim compliance with those versions and to use
the associated artwork. Authors wishing to claim compliance with the new
version must submit a new request for certification and may not claim
compliance with the new version, or use associated artwork, until and
unless certification is obtained.

AIRR Software WG - Compliance Checklist for AIRR Software Tools

Version 1.0 (when finalised)

This questionnaire should be read in conjunction with the AIRR Software WG - Guidance for AIRR Software Tools.

To submit your tool for ratification against the standard, please send the completed questionnaire
to software@airrc.antibodysociety.org.

Please provide comments in italics in each response box where these
would be helpful to facilitate understanding. We kindly ask for a brief
explanatory comment if your answer to a question is no or not applicable.

Name of Tool:

Contact Name/Institution:

Contact email:

	Requirement
Ref.

	Question

	Response

	1

	Where is the source code published (please provide a link)?

	

	2

	Does the tool support AIRR Data Representations standards?

Please list any other standard data formats that are supported

	yes/no

	3

	Does the distribution include example data?

Is the example data in MiAIRR format, where applicable?

Does the tool provide automated checks for expected output from example data?

	yes/no

yes/no/not applicable

yes/no

	4

	Does the output of the tool include a summary of the run parameters?

	yes/no

	5

	Is a container build file provided?

Container technology used?

Is the container automatically built as new versions are released?

Does the automated build run the tool against the example data and test the output?

	yes/no

Docker/Singularity/Other (please specify)

yes/no

yes/no

	6

	Where can users see what level of support is available? (Please provide a link)

	

	7

	Under what software licence is the tool published? (please provide the name of the licence (e.g. GPL, MIT) or a link

	

AIRR Software WG - List of Tools Certified as Compliant

The following tools have been certified as compliant with v1.0 of the guidelines:

	Software

	Version

	Support

	Reference

	SONAR [https://github.com/scharch/SONAR]

	3

	Output

	Schramm et al. Front Immunol, 2016. [https://doi.org/doi:10.3389/fimmu.2016.00372]

Evaluation Data Sets

The Software WG is working on the development and evaluation of simulated data
sets.

Lists of published real-world datasets are maintained in the AIRR Forum Wiki [https://b-t.cr/c/wiki].

AIRR Data Commons API V1

The use of high-throughput sequencing for profiling B-cell and T-cell
receptors has resulted in a rapid increase in data generation. It is
timely, therefore, for the Adaptive Immune Receptor Repertoire (AIRR)
community to establish a clear set of community-accepted data and
metadata standards; analytical tools; and policies and practices for
infrastructure to support data deposit, curation, storage, and
use. Such actions are in accordance with international funder and
journal policies that promote data deposition and data sharing – at a
minimum, data on which scientific publications are based should be
made available immediately on publication. Data deposit in publicly
accessible databases ensures that published results may be
validated. Such deposition also facilitates reuse of data for the
generation of new hypotheses and new knowledge.

The AIRR Common Repository Working Group (CRWG) developed a set of
recommendations [https://github.com/airr-community/common-repo-wg/blob/v0.6.0/recommendations.md] (v0.6.0) that promote the deposit, sharing, and use
of AIRR sequence data. These recommendations were refined following
community discussions at the AIRR 2016 and 2017 Community Meetings and
were approved through a vote by the AIRR Community at the AIRR
Community Meeting in December 2017.

Overview

The AIRR Data Commons (ADC) API provides programmatic access to
query and download AIRR-seq data. The ADC API uses JSON as its
communication format, and standard HTTP methods like GET and
POST. The ADC API is read-only and the mechanism of inclusion of
AIRR-seq studies into a data repository is left up to the repository.

This documentation explains how to construct and execute API requests
and interpret API responses.

API Endpoints

The ADC API is versioned with the version number (v1) as part of the
base path for all endpoints. Each ADC API endpoint represents
specific functionality as summarized in the following table:

	Endpoint

	Type

	HTTP

	Description

	/v1

	Service status

	GET

	Returns success if API service is running.

	/v1/info

	Service information

	GET

	Upon success, returns service information such as name, version, etc.

	/v1/repertoire/{repertoire_id}

	Retrieve a repertoire given its repertoire_id

	GET

	Upon success, returns the Repertoire information in JSON according to the Repertoire schema.

	/v1/repertoire

	Query repertoires

	POST

	Upon success, returns a list of Repertoires in JSON according to the Repertoire schema.

	/v1/rearrangement/{sequence_id}

	Retrieve a rearrangement given its sequence_id

	GET

	Upon success, returns the Rearrangement information in JSON format according to the Rearrangement schema.

	/v1/rearrangement

	Query rearrangements

	POST

	Upon success, returns a list of Rearrangements in JSON or AIRR TSV format according to the Rearrangement schema.

Authentication

The ADC API currently does not define an authentication
method. Future versions of the API will provide an authentication
method so data repositories can support query and download of
controlled-access data.

Search and Retrieval

The AIRR Data Commons API specifies endpoints for searching and
retrieving AIRR-seq data sets stored in an AIRR-compliant Data
Repository according to the AIRR Data Model. This documentation
describes Version 1 of the API. The general format of requests
and associated parameters are described below.

The design of the AIRR Data Commons API was greatly inspired by
National Cancer Institute’s Genomic Data Commons (GDC) API [https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/].

Components of a Request

The ADC API has two classes of endpoints. The endpoints that respond
to GET requests are simple services that require few or no
parameters. While, the endpoints that response to POST requests
are the main query services and provide many parameters for specifying
the query as well as the data in the API response.

A typical POST query request specifies the following parameters:

	The filters parameter specifies the query.

	The from and size parameters specify the number of results to skip and the maximum number of results to be returned in the response.

	The fields parameter specifies which data elements to be
returned in the response. By default all fields (AIRR and non-AIRR)
stored in the data repository are returned. This can vary between
data repositories based upon how the repository decides to store
blank or null fields, so the fields and/or include_fields
parameter should be used to guarantee the existence of data elements
in the response.

	The include_fields parameter specifies the set of AIRR fields to
be included in the response. This parameter can be used in
conjunction with the fields parameter, in which case the list of
fields is merged. This is a mechanism to ensure that specific,
well-defined sets of AIRR data elements are returned without
requiring all of those fields to be individually provided in the
fields parameter.

The sets that can be requested are summarized in the table below.

	include_fields

	MiAIRR

	AIRR required

	AIRR identifiers

	other AIRR fields

	miairr

	Y

	some

	N

	N

	airr-core

	Y

	Y

	Y

	N

	airr-schema

	Y

	Y

	Y

	Y

Service Status Example

The following is an example GET request to check that the service
API is available for VDJServer’s data repository.

curl https://vdjserver.org/airr/v1

The response should indicate success.

{"result":"success"}

Service Info Example

The following is an example GET request to get information about the service.

curl https://vdjserver.org/airr/v1

The response provides various information.

{
 "name": "adc-api-js-mongodb",
 "description": "AIRR Data Commons API reference implementation",
 "version": "1.0.0",
 "airr_schema_version": 1.3,
 "max_size": 1000,
 "max_query_size": 2097152,
 "contact": {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
}

Query Repertoire Example

The following is an example POST request to the repertoire
endpoint of the ADC API. It queries for repertoires of human TCR beta
receptors (filters), skips the first 10 results (from),
requests 5 results (size), and requests only the repertoire_id
field (fields).

curl --data @query1-2_repertoire.json https://vdjserver.org/airr/v1/repertoire

The content of the JSON payload.

{
 "filters":{
 "op":"and",
 "content": [
 {
 "op":"=",
 "content": {
 "field":"subject.organism.id",
 "value":"9606"
 }
	 },
	 {
 "op":"=",
 "content": {
 "field":"sample.pcr_target.pcr_target_locus",
 "value":"TRB"
 }
	 }
]
 },
 "from":10,
 "size":5,
 "fields":["repertoire_id"]
}

The response contains two JSON objects, an Info object that provides information about the API response and a
Repertoire object that contains the list of Repertoires that met the query search criteria. In this case, the query
returns a list of five repertoire identifiers. Note the Info object is based on the info block as specified in
the OpenAPI v2.0 specification.

{
 "Info":
 {
 "title": "AIRR Data Commons API reference implementation",
 "description": "API response for repertoire query",
 "version": 1.3,
 "contact":
 {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
 },
 "Repertoire":
 [
 {"repertoire_id": "4357957907784536551-242ac11c-0001-012"},
 {"repertoire_id": "4476756703191896551-242ac11c-0001-012"},
 {"repertoire_id": "6205695788196696551-242ac11c-0001-012"},
 {"repertoire_id": "6393557657723736551-242ac11c-0001-012"},
 {"repertoire_id": "7158276584776536551-242ac11c-0001-012"}
]
}

Endpoints

The ADC API V1 provides two primary endpoints for querying and
retrieving AIRR-seq data. The repertoire endpoint allows querying
upon any field in the Repertoire schema including study, subject, sample, cell
processing, nucleic acid processing, sequencing run, raw sequencing
files, and data processing information. Queries on the content of raw
sequencing files is not support but is supported on file attributes
such as name, type and read information. Queries on Rearrangements
is provided by the rearrangement endpoint.

The standard workflow to retrieve all of the data for an AIRR-seq
study involves performing a query on the repertoire endpoint to
retrieve the repertoires in the study, and one or more queries on the
rearrangement endpoint to download the rearrangement data for each
repertoire. The endpoints are designed so the API
response can be saved directly into a file and be used by AIRR
analysis tools, including the AIRR python and R reference libraries,
without requiring modifications or transformation of the data.

Repertoire Endpoint

The repertoire endpoint provides access to all fields in
the Repertoire schema. There are two
type of endpoints; one for retrieving a single repertoire given its
identifier, and another for performing a query across all repertoires
in the data repository.

It is expected that the number of repertoires in a data repository
will never become so large such that queries become computationally
expensive. A data repository might have thousands of repertoires
across hundreds of studies, yet such numbers are easily handled by
modern databases. Based upon this, the ADC API does not place limits
on the repertoire endpoint for the fields that can be queried, the
operators that can be used, or the number of results that can be
returned.

Retrieve a Single Repertoire

Given a repertoire_id, a single Repertoire object will be
returned.

curl https://vdjserver.org/airr/v1/repertoire/4357957907784536551-242ac11c-0001-012

The response will provide the Repertoire data in JSON format.

{
 "Info":
 {
 "title": "AIRR Data Commons API reference implementation",
 "description": "API response for repertoire query",
 "version": 1.3,
 "contact":
 {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
 },
 "Repertoire":
 [
 {
 "repertoire_id":"4357957907784536551-242ac11c-0001-012",
 "study":{
 "study_id":"PRJNA300878",
 "submitted_by":"Florian Rubelt",
 "pub_ids":"PMID:27005435",
 "lab_name":"Mark M. Davis",
 "lab_address":"Stanford University",
 "study_title":"Homo sapiens B and T cell repertoire - MZ twins"
 },
 "subject":{
 "subject_id":"TW02A",
 "synthetic":false,
 "linked_subjects":"TW02B",
 "organism":{"id":"9606","value":"Homo sapiens"},
 "age":"25yr",
 "link_type":"twin",
 "sex":"F"
 },
 "sample":[
 {"sample_id":"TW02A_T_memory_CD4",
 "pcr_target":[{"pcr_target_locus":"TRB"}],
 "cell_isolation":"FACS",
 "read_length":"300",
 "cell_phenotype":"expression of CD45RO and CCR7",
 "cell_subset":"Memory CD4+ T cell",
 "filename":"SRR2905669_R1.fastq.gz",
 "single_cell":false,
 "file_type":"fastq",
 "tissue":"PBMC",
 "template_class":"RNA",
 "paired_filename":"SRR2905669_R2.fastq.gz",
 "paired_read_direction":"reverse",
 "read_direction":"forward",
 "sequencing_platform":"Illumina MiSeq"}
],
 "data_processing":[
 {"data_processing_id":"4976322832749171176-242ac11c-0001-012",
 "analysis_provenance_id":"651223970338378216-242ac11b-0001-007"}
]
 }
]
}

Query against all Repertoires

A query in JSON format is passed in a POST request. This example queries for
repertoires of human IG heavy chain receptors for all studies in the data repository.

curl --data @query2_repertoire.json https://vdjserver.org/airr/v1/repertoire

The content of the JSON payload.

{
 "filters":{
 "op":"and",
 "content": [
 {
 "op":"=",
 "content": {
 "field":"subject.organism.id",
 "value":"9606"
 }
	 },
	 {
 "op":"=",
 "content": {
 "field":"sample.pcr_target.pcr_target_locus",
 "value":"IGH"
 }
	 }
]
 }
}

The response will provide a list of Repertoires in JSON
format. The example output is not provided here due to its size.

Rearrangement Endpoint

The rearrangement endpoint provides access to all fields in
the Rearrangement schema. There are two
type of endpoints; one for retrieving a single rearrangement given its
identifier, and another for performing a query across all
rearrangements in the data repository.

Unlike repertoire data, data repositories are expected to store
millions or billions of rearrangement records, where performing
“simple” queries can quickly become computationally expensive. Data
repositories will need to optimize their databases for
performance. Therefore, the ADC API does not require that all fields
be queryable and only a limited set of query capabilities must be
supported. The queryable fields are described in the Fields section
below.

Retrieve a Single Rearrangement

Given a sequence_id, a single Rearrangement object will
be returned.

curl https://vdjserver.org/airr/v1/rearrangement/5d6fba725dca5569326aa104

The response will provide the Rearrangement data in JSON format.

{
 "Info":
 {
 "title": "AIRR Data Commons API reference implementation",
 "description": "API response for rearrangement query",
 "version": 1.3,
 "contact":
 {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
 },
 "Rearrangement":
 [
 {
 "sequence_id":"5d6fba725dca5569326aa104",
 "repertoire_id":"1841923116114776551-242ac11c-0001-012",

 "... remaining fields":"snipped for space"
 }
]
}

Query against all Rearrangements

Supplying a repertoire_id, when it is known, should greatly speed
up the query as it can significantly reduce the amount of data to be
searched, though it isn’t necessary.

This example queries for rearrangements with a specific junction amino
acid sequence among a set of repertoires. A limited set of fields is
requested to be returned. The resultant data can be
requested in JSON or AIRR TSV format.

curl --data @query1_rearrangement.json https://vdjserver.org/airr/v1/rearrangement

The content of the JSON payload.

{
 "filters":{
 "op":"and",
 "content": [
 {
 "op":"in",
 "content": {
 "field":"repertoire_id",
 "value":[
 "2366080924918616551-242ac11c-0001-012",
 "2541616238306136551-242ac11c-0001-012",
 "1993707260355416551-242ac11c-0001-012",
 "1841923116114776551-242ac11c-0001-012"
]
 }
 },
 {
 "op":"=",
 "content": {
 "field":"junction_aa",
 "value":"CARDPRSYHAFDIW"
 }
 }
]
 },
 "fields":["repertoire_id","sequence_id","v_call","productive"],
 "format":"tsv"
}

Here is the response in AIRR TSV format.

productive v_call sequence_id repertoire_id
true IGHV1-69*04 5d6fba725dca5569326aa106 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba725dca5569326aa11b 1841923116114776551-242ac11c-0001-012
true IGHV1-69*10 5d6fba725dca5569326aa149 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba735dca5569326aa245 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba735dca5569326aa274 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba735dca5569326aa27b 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba735dca5569326aa27c 1841923116114776551-242ac11c-0001-012
true IGHV1-24*01 5d6fba735dca5569326aa2a0 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba745dca5569326aa359 1841923116114776551-242ac11c-0001-012
true IGHV1-69*04 5d6fba745dca5569326aa408 1841923116114776551-242ac11c-0001-012

Request Parameters

The ADC API supports the follow query parameters. These are only
applicable to the repertoire and rearrangement query
endpoints, i.e. the HTTP POST endpoints.

	Parameter

	Default

	Description

	filters

	null

	Specifies logical expression for query critieria

	format

	JSON

	Specifies the API response format: JSON, AIRR TSV

	include_fields

	null

	Specifies the set of AIRR fields to be included in the response

	fields

	null

	Specifies which fields to include in the response

	from

	0

	Specifies the first record to return from a set of search results

	size

	repository dependent

	Specifies the number of results to return

	facets

	null

	Provide aggregate count information for the specified fields

Filters Query Parameter

The filters parameter enables passing complex query criteria to
the ADC API. The parameter represents the query in a JSON object.

A filters query consists of an operator (or a nested set of
operators) with a set of field and value operands. The query
criteria as represented in a JSON object can be considered an
expression tree data structure where internal nodes are operators and
child nodes are operands. The expression tree can be of any depth, and
recursive algorithms are typically used for tree traversal.

The following operators are support by the ADC API.

	Operator

	Operands

	Value Data Types

	Description

	Example

	=

	field and value

	string, number, integer, or boolean

	equals

	{“op”:”=”,”content”:{“field”:”junction_aa”,”value”:”CASSYIKLN”}}

	!=

	field and value

	string, number, integer, or boolean

	does not equal

	{“op”:”!=”,”content”:{“field”:”subject.organism.id”,”value”:”9606”}}

	<

	field and value

	number, integer

	less than

	{“op”:”<”,”content”:{“field”:”sample.cell_number”,”value”:1000}}

	<=

	field and value

	number, integer

	less than or equal

	{“op”:”<=”,”content”:{“field”:”sample.cell_number”,”value”:1000}}

	>

	field and value

	number, integer

	greater than

	{“op”:”>”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}}

	>=

	field and value

	number, integer

	greater than or equal

	{“op”:”>=”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}}

	is missing

	field

	n/a

	field is missing or is null

	{“op”:”is missing”,”content”:{“field”:”sample.tissue”}}

	is

	field

	n/a

	identical to “is missing” operator, provided for GDC compatibility

	{“op”:”is”,”content”:{“field”:”sample.tissue”}}

	is not missing

	field

	n/a

	field is not missing and is not null

	{“op”:”is not missing”,”content”:{“field”:”sample.tissue”}}

	not

	field

	n/a

	identical to “is not missing” operator, provided for GDC compatibility

	{“op”:”not”,”content”:{“field”:”sample.tissue”}}

	in

	field, multiple values in a list

	array of string, number, or integer

	matches a string or number in a list

	{“op”:”in”,”content”:{“field”:”subject.strain_name”,”value”:[“C57BL/6”,”BALB/c”,”NOD”]}}

	exclude

	field, multiple values in a list

	array of string, number, or integer

	does not match any string or number in a list

	{“op”:”exclude”,”content”:{“field”:”subject.strain_name”,”value”:[“SCID”,”NOD”]}}

	contains

	field, value

	string

	contains the substring

	{“op”:”contains”,”content”:{“field”:”study.study_title”,”value”:”cancer”}}

	and

	multiple operators

	n/a

	logical AND

	{“op”:”and”,”content”:[
 {“op”:”!=”,”content”:{“field”:”subject.organism.id”,”value”:”9606”}},
 {“op”:”>=”,”content”:{“field”:”sample.cells_per_reaction”,”value”:10000}},
 {“op”:”exclude”,”content”:{“field”:”subject.strain_name”,”value”:[“SCID”,”NOD”]}}
]}

	or

	multiple operators

	n/a

	logical OR

	{“op”:”and”,”content”:[
 {“op”:”<”,”content”:{“field”:”sample.cell_number”,”value”:1000}},
 {“op”:”is missing”,”content”:{“field”:”sample.tissue”}},
 {“op”:”exclude”,”content”:{“field”:”subject.organism.id”,”value”:[“9606”,”10090”]}}
]}

Note that the not operator is different from a logical NOT
operator, and the logical NOT is not needed as the other operators
provide negation.

The field operand specifies a fully qualified property name in the AIRR
Data Model. Fully qualified AIRR properties are either a JSON/YAML base type (string, number,
integer, or boolean) or an array of one of these base types (some AIRR fields are arrays
e.g. study.keywords_study).
The Fields section below describes the available queryable fields.

The value operand specifies one or more values when evaluating the
operator for the field operand.

Queries Against Arrays

A number of fields in the AIRR Data Model are arrays, such as
study.keywords_study which is an array of strings or
subject.diagnosis which is an array of Diagnosis objects. A
query operator on an array field will apply that operator to each
entry in the array to decide if the query filter is satisfied. The
behavior is different for various operators. For operators such as
= and in, the filter behaves like the Boolean OR over the
array entries, that is if any array entry evaluates to true then
the query filter is satisfied. For operators such as != and
exclude, the filter behaves like the Boolean AND over the
array entries, that is all array entries must evaluate to true for
the query filter to be satisfied.

Examples

A simple query with a single operator looks like this:

{
 "filters": {
 "op":"=",
 "content": {
 "field":"junction_aa",
 "value":"CASSYIKLN"
 }
 }
}

A more complex query with multiple operators looks like this:

{
 "filters": {
 "op":"and",
 "content": [
 {
 "op":"!=",
 "content": {
 "field":"subject.organism.id",
 "value":"9606"
 }
 },
 {
 "op":">=",
 "content": {
 "field":"sample.cells_per_reaction",
 "value":"10000"
 }
 },
 {
 "op":"exclude",
 "content": {
 "field":"subject.organism.id",
 "value": ["9606", "10090"]
 }
 }
]
 }
}

Format Query Parameter

Specifies the format of the API response. json is the default
format and is available for all endpoints. The rearrangement
POST endpoint also accepts tsv which will provide the data in the
AIRR TSV format.

Fields Query Parameter

The fields parameter specifies which fields are to be included in
the API response. By default all fields (AIRR and non-AIRR) stored in
the data repository are returned. However, this can vary between data
repositories based upon how the repository decides to store blank or
null fields, so the fields and/or include_fields parameter
should be used to guarantee the existence of data elements in the
response.

Include Fields Query Parameter

The include_fields parameter specifies that the API response
should include a well-defined set of AIRR Standard fields. These sets
include:

	miairr, for only the MiAIRR fields.

	airr-core, for the AIRR required and identifier fields. This is
expected to be the most common option as it provides all MiAIRR
fields, additional required fields useful for analysis, and all
identifier fields for linking objects in the AIRR Data Model.

	airr-schema, for all AIRR fields in the AIRR Schema.

The include_fields parameter is a mechanism to ensure that
specific AIRR data elements are returned without requiring those
fields to be individually provided with the fields parameter. Any
data elements that lack a value will be assigned null in the
response. Any empty array of objects, for example
subject.diagnosis, will be populated with a single object with all
of the object’s properties given a null value. Any empty array of
primitive data types, like string or number, will be assigned
null. Note that if both the include_fields and the fields
parameter are provided, the API response will include the set of AIRR
fields and in addition will include any additional fields that are
specified in the fields parameter.

Size and From Query Parameters

The ADC API provides a pagination feature that limits the number of results returned by the API.

The from query parameter specifies which record to start from when
returning results. This allows records to be skipped. The default
value is 0 indicating that the first record in the set of results
will be returned.

The size query parameters specifies the maximum number of results
to return. The default value is specific to the data repository, and a
maximum value may be imposed by the data repository. This is to
prevent queries from “accidently” returning millions of records. The
info endpoint provides the data repository default and maximum
values for the repertoire and rearrangement endpoints, which
may have different values. A value of 0 indicates there is no
limit on the number of results to return, but if the data repository
does not support this then the default value will be used.

The combination of from and size can be used to implement
pagination in a graphical user interface, or to split a very large
download into smaller batches. For example, if an interface displays
10 records as a time, the request would assign size=10 and
from=0 to get the ten results to display on the first page. When
the user traverses to the “next page”, the request would assign
from=10 to skip the first ten results and return the next ten
results, and from=20 for the next page after that, and so on.

Facets Query Parameter

The facets parameter provides aggregate count information for the
specified field. Only a single field can be specified. The facets
parameter can be used in conjunction with the filters parameter to
get aggregate counts for a set of search results. It returns the set
of values for the field, and the number of records (repertoires or
rearrangement) that have this value. For field values that have no
counts, the API service can either return the field value with a 0
count or exclude the field value in the aggregation. The typical use
of this parameter is for displaying aggregate information in a
graphical user interface.

Here is a simple query with only the facets parameter to return
the set of values for sample.pcr_target.pcr_target_locus and the
count of repertoires repertoires that have each value. The content of
the JSON payload.

{
 "facets":"sample.pcr_target.pcr_target_locus"
}

Sending this query in an API request.

curl --data @facets1_repertoire.json https://vdjserver.org/airr/v1/repertoire

The output from the request is similar to normal queries except the data is
provided with the Facet key.

{
 "Info": {
 "title": "AIRR Data Commons API reference implementation",
 "description": "API response for repertoire query",
 "version": 1.3,
 "contact": {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
 },
 "Facet": [
 {"sample.pcr_target.pcr_target_locus":[["TRB"]],"count":40},
 {"sample.pcr_target.pcr_target_locus":[["IGH"]],"count":20}
]
}

Here is a query with both filters and facets parameters, which restricts
the data records used for the facets count. The content of
the JSON payload.

{
 "filters":{
 "op":"=",
 "content": {
 "field":"sample.pcr_target.pcr_target_locus",
 "value":"IGH"
 }
 },
 "facets":"subject.subject_id"
}

Sending this query in an API request.

curl --data @facets2_repertoire.json https://vdjserver.org/airr/v1/repertoire

Example output from the request. This result indicates there are ten
subjects each with two IGH repertoires.

{
 "Info": {
 "title": "AIRR Data Commons API reference implementation",
 "description": "API response for repertoire query",
 "version": 1.3,
 "contact": {
 "name": "AIRR Community",
 "url": "https://github.com/airr-community"
 }
 },
 "Facet": [
 {"subject.subject_id":"TW05B","count":2},
 {"subject.subject_id":"TW05A","count":2},
 {"subject.subject_id":"TW03A","count":2},
 {"subject.subject_id":"TW04A","count":2},
 {"subject.subject_id":"TW01A","count":2},
 {"subject.subject_id":"TW04B","count":2},
 {"subject.subject_id":"TW02A","count":2},
 {"subject.subject_id":"TW03B","count":2},
 {"subject.subject_id":"TW01B","count":2},
 {"subject.subject_id":"TW02B","count":2}
]
}

ADC API Limits and Thresholds

Repertoire endpoint query fields

It is expected that the number of repertoires in a data repository will never become so
large such that queries become computationally expensive. A data repository might have
thousands of repertoires across hundreds of studies, yet such numbers are easily handled
by databases. Based upon this, the ADC API does not place limits on the repertoire endpoint
for the fields that can be queried or the operators that can be used.

Rearrangement endpoint query fields

Unlike repertoire data, data repositories are expected to store billions of
rearrangement records, where performing “simple” queries can quickly become computationally
expensive. Data repositories are encouraged to optimize their databases for performance.
Therefore, based upon a set of query use cases provided by immunology experts, a minimal
set of required fields was defined that can be queried. These required fields are described
in the following Table. The fields also have the AIRR extension property adc-query-support: true
in the AIRR Schema.

	Field(s)

	Description

	sequence_id, repertoire_id, sample_processing_id, data_processing_id, clone_id, cell_id

	Identifiers; sequence_id allows for query of that specific rearrangement object in the repository, while repertoire_id, sample_processing_id, and data_processing_id are links to the repertoire metadata for the rearrangement. The clone_id and cell_id are identifiers that group rearrangements based on clone assignment and single cell assignment.

	locus, v_call, d_call, j_call, c_call, productive, junction_aa, junction_aa_length

	Commonly used rearrangement annotations.

Repertoire/rearrangement object size

Any single repertoire or rearrangement object has a maximum that is typically dependent
upon the back-end database which stores the data. For MongoDB-based data repositories, the
largest object size is 16 megabytes.

Repertoire/rearrangement query size

For MongoDB-based data repositories, a query is a document thus the query size is limited
to the maximum document size of 16 megabytes.

Data repository specific limits

A data repository may provide additional limits. These can be retrieved from the info
endpoint. If the data repository does not provide a limit, then the ADC API default limit or
no limit is assumed.

	Field

	Description

	max_size

	The maximum value for the size query parameter. Attempting to retrieve beyond this maximum may trigger an error or may only return max_size records based upon the data repository behavior.

	max_query_size

	The maximum size of the JSON query object.

Reference Implementation

The AIRR Community provides a reference implementation for an ADC API
service with more information found here.

AIRR Ontologies and Vocabularies Team

Summary

The “Ontologies and Vocabularies Team” was formed as a joint interest
group of the Common Repository (ComRepo) and the Minimal Standards
(MiniStd) working groups of the AIRR Community. The long-term aim of
the Team is to define standard vocabularies and ontologies to be used
by AIRR-compliant databases.

Sprint Reports

	Report Sprint 11/2018
	Objectives

	General Considerations

	Criteria for Ontologies

	Selected Ontologies

	Technical aspects

	Footnotes

	Appendix

	Report Sprint 04/2020
	Objectives

	General Policies

	Decisions on Pending Items of Sprint 11/2018

	New Ontologies

	Technical Questions

	Modifications to the AIRR schema

	Clarifications

	Annotation guidance

Approved Ontologies

	Cell ontology (CL [http://obofoundry.org/ontology/cl.html])

	used in:

	Cell subset (cell_subset,
Tissue and Cell Processing)

	default root node

	label: lymphocyte

	local id: CL_0000542

	path: ``

	license: CC BY [https://creativecommons.org/licenses/by/4.0/]

	latest release (as of 2020-05-20): 2020-03-02

	repo: https://github.com/obophenotype/cell-ontology

	maintainer: Alexander Diehl, Buffalo, NY, US
(addiehl@buffalo.edu)

	Human disease ontology (DOID [https://disease-ontology.org])

	used in:

	Diagnosis (disease_diagnosis,
Diagnosis)

	default root node

	label: disease

	local ID: DOID:4

	path: disease

	license: CC0 [https://creativecommons.org/publicdomain/zero/1.0/]

	latest release (as of 2020-05-20): 2020-04-20

	repo: https://github.com/DiseaseOntology/HumanDiseaseOntology

	maintainer: Lynn Schriml, U Maryland, MD, US
(lynn.schriml@gmail.com)

	notes: Features ICD cross-reference

	NCBI organismal taxonomy (NCBITAXON [https://www.ebi.ac.uk/ols/ontologies/NCBITAXON])

	used in:

	Species (species, Subject)

	Cell species (cell_species,
Tissue and Cell Processing)

	default root node

	label: Gnathostomata

	local ID: 7776

	path:
cellular organisms/Eukaryota/Opisthokonta/Metazoa/Eumetazoa/Bilateria/Deuterostomia/Chordata/Craniata/Vertebrata/Gnathostomata

	license: UMLS

	latest release (as of 2020-05-20): 2020-04-18

	repo: https://github.com/obophenotype/ncbitaxon

	maintainer: NCBI (info@ncbi.nlm.nih.gov)

	NCI thesaurus (NCIT [https://www.ebi.ac.uk/ols/ontologies/ncit])

	used in:

	Study type (study_type, Study)

	default root node

	label: Study

	local ID: C63536

	path: Activity/Clinical or Research Activity/
Research Activity/Study

	license: Public domain, credit of NCI is requested

	repo: https://github.com/NCI-Thesaurus/thesaurus-obo-edition

	latest release (as of 2020-05-20): 2020-05-04

	maintainer: NCI (ncicbiitappssupport@mail.nih.gov)

	Units of measurement ontology (UO [https://www.ebi.ac.uk/ols/ontologies/UO])

	used in:

	Age unit (age_unit, Subject)

	default root node

	label: time unit

	local ID: UO_0000003

	path: unit/time unit

	license: CC BY [https://creativecommons.org/licenses/by/4.0/] (per Github repo)

	repo: https://github.com/bio-ontology-research-group/unit-ontology

	latest release (as of 2020-05-20): 2020-05-18

	maintainer: unknown

	Uber-anatomy ontology (Uberon [https://www.ebi.ac.uk/ols/ontologies/UBERON])

	used in:

	Tissue (tissue, Sample)

	default root node

	label: multicellular anatomical structure

	local ID: UBERON:0010000

	path:
/BFO_0000002/BFO_0000004/anatomical entity/material anatomical entity/anatomical structure/multicellular anatomical structure

	license: CC BY [https://creativecommons.org/licenses/by/4.0/]

	repo: https://github.com/obophenotype/uberon

	latest release (as of 2020-05-20): 2019-11-22

	maintainer: Chris Mungall, LBL, CA, US
(cjmungall@lbl.gov)

OntoVoc Report - Sprint 11/2018

Objectives

The objectives of this first sprint in November 2018 were to:

	define criteria for suitable ontologies

	identify ontologies for five fields/keywords of the MiAIRR data
standard and

	assess technical aspects of ontology integration into databases

General Considerations

The Team initially discussed an approach where only vocabularies (i.e.
lists of terms) and not ontologies (i.e. many terms connected by
predicates) would have been defined. These vocabularies would have been
derived from ontologies, but this process would not necessarily have
been reversible. The notion at this time point was, that such an
approach would allow to solve a number of problems like combining
multiple sources and removing duplicated leaves. However, after some
discussions this approach was effectively abandoned for a number of
reasons:

	It would discard the UID for an entity. As the UID (in contrast to
the name string) is guaranteed to be stable and unique, it
facilitates updates, linking and information representation, all of
which would otherwise be lost.

	In general, it will be more sustainable to work with the maintainers
of an existing ontology to include entities/terms, than just dumping
their terms into a list and adding new ones.

	Well-designed ontologies will not contain duplicated entities,
although they might appear to do so in a simple browsers (i.e. this
is an artifact of representation). Ontologies that actually do
contain duplicates are excluded by criterium 2.

Criteria for Ontologies

Criteria

Ontologies used within AIRR standards

	MUST 1 cover the majority of the required terms, but complete
coverage is OPTIONAL

	MUST have a structure that is scientifically correct and logically
coherent

	MUST NOT feature complexity that makes it hard to use for queries
and data representation

	SHOULD already be widely adopted

	MUST be actively maintained

	MUST be available under a free license

Comments on criteria:

	ad (1): For most fields it will be difficult to find complete and
accurate ontologies. Therefore picking the best available ontology
and working with its maintainers to include missing terms is expected
to be the most sustainable approach.

	ad (5): This requirement follows from (1), as there needs to be
a way for term requests.

	ad (6): A number of ontologies need to be licensed from their
respective copyright holders. This results in potential barriers for
implementation and distribution of such ontologies. Therefore only
ontologies available under a free license are considered suitable for
AIRR-compliant databases. The list of suitable licenses is not final,
but includes: CC0 [https://creativecommons.org/publicdomain/zero/1.0/] and CC BY [https://creativecommons.org/licenses/by/4.0/].

Selected Ontologies

(designations are MiAIRR field names and DataRep keywords)

Completed

	Species (organism)

	NCBITAXON [https://bioportal.bioontology.org/ontologies/NCBITAXON]

	license: UMLS 2

	latest release: 2018-07-06

	maintainer: NCBI (info@ncbi.nlm.nih.gov)

	Diagnosis (disease_diagnosis)

	DOID [https://bioportal.bioontology.org/ontologies/DOID]

	root node

	name: disease

	ID: DOID:4

	path: /disease

	License: CC BY [https://creativecommons.org/licenses/by/4.0/]

	latest release: 2018-03-02

	maintainer: Lynn Schriml, U Maryland, MD, US
(lynn.schriml@gmail.com)

	notes: Features ICD cross-reference

	Cell subset (cell_subset)

	CellOntology [https://bioportal.bioontology.org/ontologies/CL]

	license: CC BY [https://creativecommons.org/licenses/by/4.0/]

	latest release: 2018-07-11

	maintainer: Alexander Diehl, Buffalo, NY, US
(addiehl@buffalo.edu)

	Tissue (tissue)

	Uberon [https://bioportal.bioontology.org/ontologies/UBERON]

	root node

	name: multicellular anatomical structure

	ID: UBERON:0010000

	path: /BFO_0000002/BFO_0000004/anatomical entity/material
anatomical entity/anatomical structure/multicellular anatomical
structure

	License: CC BY [https://creativecommons.org/licenses/by/4.0/]

	latest release: 2018-10-15

	Maintainer: Chris Mungall, LBL, CA, US
(cjmungall@lbl.gov)

Under evaluation

	Strain name (strain_name)

	Suggested ontologies:

	JAX

	IEDB

	Issues:

	Nomenclature

	one ontology is not enough

Technical aspects

	Repositories:

	UID assigned by ontologies are guaranteed to be unique and
permanent 3.

	A repository MAY use internal identifiers that are distinct from
UIDs. However, to be AIRR-compliant it MUST be able to map UIDs to
its identifiers.

	Points of “AIRR compliance” would typically be:

	When data is extracted from the repository through a Query API
(CRWG)

	When data is extracted from the repository into a file format
(DataRep)

	Integration of ontologies into repositories:

	There are two main ontology providers offering a REST API and all
the ontologies listed above:

	NCBO Bioportal [https://bioportal.bioontology.org]

	OLS ontology [https://www.ebi.ac.uk/ols/ontologies]

	NCBO can apparently be slow and sometimes not that stable, while
OLS seems to be more stable and potentially has a better long-term
support.

	Remote ontology services tend to be slow and create external
dependencies. On the other hand, while local hosting of an
ontology is possible (and partially supported by NCBO and OLS), it
requires non-negligible resources. The Team’s current assumption
is that queries to remote ontology services can be substantially
accelerated if only the relevant section of a respective ontology
is queried. Therefore a local service would not be necessary.

	Repositories should store both the IDs and the values in their
database. This way, they do not have to query the ontology in a
scenario where human-readable output is required. In the case of
changes, most ontologies try to follow the practice of not
changing a term value but instead create a new term with the new
value and a new ID, and deprecating the old term. Therefore term
deprecation needs to be handled by the repository.

	Like for the databases, also the API should be able to handle both
IDs and values as query input and return both during a query.

	The user interface (UI) should offer an ontology-backed
autocomplete. NCBO provides some JavaScript code to use. The UI
must not offer deprecated terms. To allow entry of terms not
present in the ontology, data can be prefixed with some text that
will allow the data validation to proceed (e.g., if an entry
starts with “other -” the UI will not autocomplete/validate).
Later, i.e. when the term has been created, the data will be
updated.

	Note that the complete IEDB can be downloaded as SQL dump [https://www.iedb.org/database_export_v3.php], it is
licensed under CC BY [https://creativecommons.org/licenses/by/4.0/]. At a first glance, the main overlap seems to
be with organism, strain_name and to a smaller extent
disease_diagnosis. However, sample information like cell_subset
and tissue seems to be largely absent from IEDB, so it could
currently not be the one-stop solution for AIRR.

Footnotes

	1

	See the “Glossary” section on how to interpret term written in
all-caps.

	2

	Will require further review the UMLS Metathesaurus License [https://uts.nlm.nih.gov/license.html] is not a free license,
however it needs to be clarified how much of it relates to the work
(i.e. the taxonomy itself) and how much to the service.

	3

	This has more recently (early 2020) been called in question and
will be revisited during the next sprint. Note that the uncertainty
revolves around the question what exactly constitues a UID, rather
than the question whether a UID is permanent and unique.

Appendix

Glossary

	MUST / REQUIRED: Indicates that an element or action is necessary to
conform to the standard.

	SHOULD / RECOMMENDED: Indicates that an element or action is
considered to be best practice by AIRR, but not necessary to conform
to the standard.

	MAY / OPTIONAL: Indicates that it is at the discretion of the user
to use an element or perform an action.

	MUST NOT / FORBIDDEN: Indicates that an element or action will be in
conflict with the standard.

OntoVoc Report - Sprint 04/2020

Objectives

The objectives of this second sprint in April 2020 were to:

	revisit general policies around ontologies used in the AIRR schema

	identify two new ontologies for several fields of the AIRR schema

	solve technical questions regarding IDs and providers

General Policies

The OntoVoc team revisited the criteria for ontologies used in the AIRR
schema that it defined in the 11/2018 sprint.
While they are still considered to be valid, the team felt that a more
detailed guidance could be useful in the process of selecting ontologies
for new fields. It therefore evaluated the OBO Foundry Principles [https://en.wikipedia.org/wiki/OBO_Foundry#Principles],
which partially re-iterate some of the existing criteria (e.g.,
Openness and Maintenance),
but also provide additional recommendations, e.g., the presence of
textual definitions, clear scope and a common format, which were
considered to be valuable additions to the existing guidelines. The team
therefore decided to endorse the OBO Foundry Principles, as RECOMMENDED
(but NOT REQUIRED) criteria. It should be noted, that this does not make
any statement regarding the use of OBO vs. non-OBO ontologies.

Decisions on Pending Items of Sprint 11/2018

A number of decisions on draft and legacy ontologies as well as root
nodes was not officially passed during the last sprint. The team thus
revisited and confirmed the following decisions:

	Use of NCIT for study_type, top node Study (NCIT:C63536).

	Use of UO for age_unit, top node time unit (UO:0000003).

	Use of `Gnathostomata (NCBITAXON:7776) as top node for
NCBITAXON when used for fields encoding a host species.

	Use of lymphocyte (CL:0000542) as top node for CL when
used for cell_subset.

New Ontologies

Mouse strain

Background

Mouse strain names follow a very elaborate nomenclature [http://www.informatics.jax.org/mgihome/nomen/strains.shtml] that is
capable of describing the genetic background, breeding history and
introduced mutation in a detailed manner. However, this nomenclature
is rarely used correctly (if at all), which creates uncertainty about
the identity of strains used in experimental studies. Therefore an
ontology or vocabulary compliant to this nomenclature would be of
tremendous help for consistent annotation.

An ontology for the strain_name field was already on the list for
the last sprint, however it was not possible to identify a single
ontology that would contain comprehensive information about strains
from multiple species. This situation created a problem that could not
be resolved then. In the meantime, the concept of “extensions” has
been introduced to the AIRR schema, which create an additional layer of
fields (and associated ontologies) on top of a core schema. As these
extensions can be made conditional on the value of fields within the
core schema, it has now become possible to have multiple extensions
defining the strain_name field, but for different species and
therefore with distinct species-specific ontologies.

Having addressed this issue, the other key problem that remains is the
absence of an actual ontology for mouse strains, while a
rat strain ontology [https://www.ebi.ac.uk/ols/ontologies/rs] exists. Therefore in a first step it is necessary
to identify resources that you at least serve as a provider for
vocabularies. The two potential candidates that were identified are:

	MGI: The Mouse Genome Informatics database hosted at JAX aims to be
comprehensive in regard to all mouse strains that have been published
in the literature.

	IEDB: The Immune Epitope Database already ran into the problem of a
missing mouse ontology and therefore decided to build up their own
reference focused on immunologically relevant strains, as part of
their Ontie database.

Once it is clear which of the resources could be used, it will be
necessary to approach the current maintainers regarding their
willingness to convert the data into an actual ontology (the RS could
serve as a template for this). As this will take longer than just a
couple of weeks, the second step is out-of-scope for this sprint.

Evaluation

	MGI: The database can be downloaded as a dump, however the licensing
conditions are unclear. It contains a total of 60k entries of which
3.2k inbred and 13.8k are congenic strains. The majority of the
remaining entries are coisogenic strains, most of them from large-
scale gene KO projects.

	IEDB: Database dumps can also be downloaded and are freely available
under CC-BY 4.0. It covers over a thousand mouse strains and contains
additional information on the genetic background of a strain.

Next steps

	Get in touch with JAX (pending)

Geolocation

There are several (planned) extensions to the AIRR metadata standard that
will provide geospatial metadata. Country-level information is typically
assumed to be privacy-preserving and easy to operationalize. Therefore,
while clearly only capturing some aspects of genetic ancestry, it might
serve as a proxy for concepts of “race” and “ethnicity” that are rather
ill-defined.

Potential candidate vocabularies/ontologies:

	ISO3166-1 alpha-2 [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2]: Two-letter code, some ambiguity but well known
from ccTLDs.

	ISO3166-1 alpha-3 [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3]: Three-letter code, less ambiguity than alpha-2.

	UN Stats Division code (currently M49 [https://unstats.un.org/unsd/methodology/m49]): Numerical code, not
human-readable, maps to ISO3166-1 alpha-3.

	Gazetter (GAZ [https://www.ebi.ac.uk/ols/ontologies/gaz])

	Contains 2nd (state) and 3rd (county) level information.

	Not linked to any actual coordinates

	ISO3166-1 annotation is incomplete and lacks e.g. for Germany and
Switzerland.

	Does not support German Umlauts. Äbsölütely inacceptable, as these
are not just diacritical marks (i.e. “Münster” and “Munster” are
two different cities).

	HANCESTRO [https://www.ebi.ac.uk/ols/ontologies/hancestro]:

	Seems to be complete, but does not provide ISO3166 codes.

	Ontology could also be used for other fields relating to genetic
ancestry.

	Links to DBpedia, currently unclear whether it is also populated
from there

	country node has pan-240 leaves (surplus seems due to oversea
territories), cross-referencing to GAZ (s/a)

	Various pathogen-related repositories:

	VectorBase (VBGEO [https://www.vectorbase.org/ontology-browser]): see link and choose “GADM/VBGEO PlaceNames”

	Viral Pathogen Resource (ViPR [https://www.viprbrc.org]):

	Uses v1.3 of the GSCID/BRC Project and Sample Application
Standard [https://www.niaid.nih.gov/research/human-pathogen-and-vector-sequencing-metadata-standards].

	GSCID/BRC Core Sample [https://github.com/GSCID-BRC-Metadata-Standard-WG/GSCID-BRC-Project-and-Sample-Application-Standard/blob/master/NIAID%20GSC%20BRC_Core%20Metadata%20Standard_v1.3_Core_Sample_final.docx] defines four fields for “Collection
Location”:

	“Latitude” (CS11) and “Longitude” (CS12) in ISO
6709 [https://en.wikipedia.org/wiki/ISO_6709] format

	“Location” (CS13), using GAZ as controlled vocabulary

	“Country” (CS14) as by ISO3166-1 (alpha-2).

	Influenza Research Database (IRD [https://www.fludb.org]): Flu-focused version of ViPR,
also uses GSCID/BRC Project and Sample Application Standard v1.3.

	Pathosystems Resource Integration Center (Patric [https://patricbrc.org]): Focused on
bacterial infectious diseases. Uses an “Isolation Country” field
in their “Genome” table, format seems to be full text.

Rejected candidates:

	HL7: own ontology deprecated, now recommends ISO 3166-1 alpha-3 set.

	NCIT: Incomplete, only contains pan-90 entities

	SNOMED: Licensing issues

	GADM data: Good quality and resolution, but not an ontology in
itself. Also not under a free license, does not allow redistribution
or commercial use.

Evaluation

Given the number of options, there is no obvious candidate to pick.
Therefore the team decided to define clear use cases and then evaluate
each options against them. However, due to time limitation, we did not
really get into this, will have to follow up in the next sprint. The
use cases so far were:

	Annotate country of birth / of sampling [REQUIRED]

	Encode higher resolution than country level if legally permitted and
scientifically meaningful [RECOMMENDED].

	Linking to geo-spatial coordinates [OPTIONAL]

Technical Questions

Background and Problem

Some nomenclature first: The nodes in an ontology graph are typically
either concepts (e.g., capital) or instances thereof (e.g., Paris).
These nodes have local IDs (often numbers), which are unique within
an ontology. They also typically have labels, which is the human-
readable name of the node. Nodes can have additional attributes (e.g.,
“population count”) and are connected to other nodes by relations
(e.g. “is-a”, “superset-of”), which create the edges of the graph.

The complete ontology is usually represented in an XML or OWL file.
However, we are looking for a provider, i.e. a service that
facilitates queries of an ontology via web and/or an API-based
interface. Upon querying with a unique ID, is it expected that a
provider will be able to return the record of a node, which should
contain all attributes and relations. Furthermore a provider might
allow set- and graph-based queries (e.g., is A a complete subset of B;
what is the last common ancestor of A and B). Finally a provider can
offer lookup services, i.e., identify the corresponding concept or
instance in another ontology. Until now we have mainly looked at
three providers: Ontobee [http://www.ontobee.org/], OLS [https://www.ebi.ac.uk/ols/index] and BioPortal [https://bioportal.bioontology.org]. While they all
provide similar basic services, it should be noted that some biomedical
databases and repositories are, by convention, restricted to use certain
providers.

As stated above, each node has a local ID. To avoid conflicts between
the local IDs of multiple ontologies, providers and ontology
collections (e.g., OBO Foundry) use a namespace [https://en.wikipedia.org/wiki/Namespace], i.e., some
abbreviation for the ontology that is prefixed to the local ID.
However, as there no common standard how to create these prefixes, this
system is only unambiguous and collision-safe within a single
provider. To resolve this issue, ontologies often use International
Resource Identifiers (IRI, [RFC3987]). While IRIs look like HTTP URLs,
they should primarily be considered as permanent and globally unique
identifiers, which might resolve to the node’s record via DNS/HTTP, but
this is optional. In addition, potential intermediate URLs generated in
the DNS/HTTP resolving process must be considered internal and therefore
should not be used by third parties. Finally, it needs be noted that
IRIs should to be considered case-sensitive, especially when used as
identifiers (per [RFC3987], Section 5.3.2.1, which only excludes
the schema and host (authority) component for case-sensitivity).

While many ontologies already define an entities IRI on the level of the
ontology, there are some that do not. For such ontologies, IRIs are then
assigned by the provider. The most notable example for this are the UMLS
ontologies like the NCBI Taxonomy. This leads to the situation that a
single node in an ontology, stored by two providers can have different
IRIs. Therefore, a concept from NCBI Taxonomy, e.g., the duck-billed
platypus (label: Ornithorhynchus anatinus, local ID: 9258) has
the IRI http://purl.obolibrary.org/obo/NCBITaxon_9258 in Ontobee and
the IRI http://purl.bioontology.org/ontology/NCBITAXON/9258 in
BioPortal. In addition, other providers might choose to use one of these
IRIs too, although it will never resolve to their system via DNS/HTTP
(e.g., OLS uses the Ontobee IRIs).

For the AIRR Community, this creates the challenge that we want to be
able to have unambiguous identifiers, without requiring any specific
provider.

Proposed solution

Compact URIs (CURIEs [https://www.w3.org/TR/curie]) are a standardized way to abbreviate IRIs,
which includes URIs as a subset. They were originally conceived to
simplify the handling of attributes, e.g. in XML or SPARQL, by making
them more compact and readable. CURIEs are e.g. used by IEDB databases
to reduce redundancies (mainly in the leading part of IRIs).

A typical CURIE would, e.g., look like NCBITAXON:9258. In this case,
NCBITAXON is the prefix, a custom string that will be replaced by
a repository-defined IRI component (e.g.,
http://purl.obolibrary.org/obo/NCBITaxon_). Note that there is no
connection between NCBITAXON in the CURIE and NCBITaxon in the
IRI, the former one is just a placeholder.

This resolves the issue of different providers usings different IRIs
with distinct formatting rules (as described above). As the choice of the
provider is independent for each ontology, it allows greater
flexibility for the repositories, as they do not need a single
provider that needs be able to resolve all terms. Similarly, different
repositories can use the same ontology, but use different providers.
Note that this would not require changes to the data, as the data would only
contains CURIEs, not the (provider-specific) IRIs.

The AIRR schema will provide a list of AIRR approved CURIE prefixes
along with a list of at least one IRI prefix (i.e., replacement
string) for each them. This list serves two purposes:

	It provides a controlled namespace for CURIE prefixes used in the
AIRR schema. For now, custom additions to or replacements of these
prefixes in the schema is prohibited. This does not affect the
ability of repositories to use such custom prefixes internally.

	It simplifies resolution of CURIEs by non-repositories. The
lists of IRI prefixes for each CURIE prefix should not be
considered to be exhaustive. However, when using custom IRI
prefixes, it must be ensured that they refer to the same
ontology as the provider prefixes.

It should be explicitly noted that the IRI prefix list should not be
interpreted as any kind of recommendation for certain providers. It is
left up to users to decide how to resolve the resulting IRIs, e.g., via
DNS/HTTP (if possible) or by using a provider of their choice.

Modifications to the AIRR schema

All changes to the AIRR schema that would be based on the sprint can
currently be reviewed on Github in Pull Request #385 [https://github.com/airr-community/airr-standards/pull/385]. These changes
are intended to be included into the next major release.

Clarifications

	Root nodes are specific to individual fields, not to an ontology.
Therefore, NCBITAXON will use a root node of “Gnathostomata” for the
annotations of the host species, but this would not be useful, e.g.,
if it would be used to annotate pathogenic organisms, which will
require a top node at the apex of the hierarchy.

	The labels (previous: values) that are provided in the schema
for ontology-based fields, should be considered an addition for
convenience and not as being authoritative. Repositories or applications
can choose to link synonyms to given concepts (e.g., “human” for
“Homo sapiens”) to simply search queries. Repositories further can
provide such a synonym in the label field upon exporting data.
However, repositories importing data should verify the correctness of
labels that do not match the one provided by the ontology.
Importing repositories must not be expected to allow for queries of
labels other than those present in the ontology.

Annotation guidance

Note that this section is only a parking lot, the respective text will be moved into the AIRR Docs in the final version.

	Cells that come from Ficoll gradients should not be annotated as
PBMCs as this is a sister node of lymphocyte. For the
other sampling related fields, in nearly all cases venous blood
(UBERON:0013756) will be the correct tissue and it should
be used in the case of sample_type:peripheral venous puncture.
However, if the mode of sampling is not specified, blood
(UBERON:0000178) should be used instead. Also see
https://github.com/airr-community/airr-standards/issues/242

	RFC3987(1,2)

	Internationalized Resource Identifiers (IRIs).
DOI:10.17487/RFC3987 [https://doi.org/10.17487/RFC3987]

Schema Release Notes

Version 1.3.0: May 28, 2020

Version 1.3 schema release.

New Schema:

	Introduced the Repertoire Schema for describing study meta data.

	Introduced the PCRTarget Schema for describing primer target locations.

	Introduced the SampleProcessing Schema for describing experimental processing
steps for a sample.

	Replaced the SoftwareProcessing schema with the DataProcessing schema.

	Introduced experimental schema for clonal clusters, lineage trees, tree nodes,
and cells as Clone, Tree, Node, and Cell objects, respectively.

General Updates:

	Added multiple additional attributes to a large number of schema propertes as AIRR
extension attributes in the x-airr field. The new Attributes object
contains definitions for these x-airr field attributes.

	Added the top level required property to all relevant schema objects.

	Added the title attribute containing the short, descriptive name to all
relevant schema object fields.

	Added an example attribute containing an example data value to multiple
schema object fields.

AIRR Data Commons API:

	Added OpenAPI V2 specification (specs/adc-api.yaml) for AIRR Data Commons
API major version 1.

Ontology Support:

	Added Ontology and CURIEResolution objects to support ontologies.

	Added vocabularies/ontologies as JSON string for: Cell subset, Target substrate, Library generation method,
Complete sequences, Physical linkage of different loci.

Rearrangement Schema:

	Added the complete_vdj field to annotate whether a V(D)J alignment was
full length.

	Added the junction_length_aa field defining the length of the junction
amino acid sequence.

	Added the repertoire_id, sample_processing_id, and
data_processing_id fields to serve as linkers to the appropriate metadata
objects.

	Added a controlled vocabulary to the locus field:
IGH, IGI, IGK, IGL, TRA, TRB, TRD, TRG.

	Deprecated the rearrangement_set_id and germline_database fields.

	Deprecated rearrangement_id field and made the sequence_id
field be the primary unique identifer for a rearrangement record,
both in files and data repositories.

	Added support secondary D gene rearrangement through the additional fields:
d2_call, d2_score, d2_identity, d2_support, d2_cigar
np3, np3_aa, np3_length, n3_length, p5d2_length,
p3d2_length, d2_sequence_start, d2_sequence_end,
d2_germline_start, d2_germline_start, d2_alignment_start,
d2_alignment_end, d2_sequence_alignment, d2_sequence_alignment_aa,
d2_germline_alignment, d2_germline_alignment_aa.

	Updated field definitions with more concise V(D)J call descriptions.

Alignment Schema:

	Deprecated the rearrangement_set_id and germline_database fields.

	Added the data_processing_id field.

Study Schema:

	Added the study_type field containing an ontology defined term
for the study design.

Subject Schema:

	Deprecated the organism field in favor of the new species field.

	Deprecated the age field.

	Introduced age ranges: age_min, age_max, and age_unit.

Diagnosis Schema:

	Changed the type of the disease_diagnosis field from string to Ontology.

Sample Schema:

	Changed the type of the tissue field from string to Ontology.

CellProcessing Schema:

	Changed the type of the cell_subset field from string to Ontology.

	Introduced the cell_species field which denotes the species from which the
analyzed cells originate.

NucleicAcidProcessing Schema:

	Defined the template_class field as type string.

	Added a controlled vocabulary the library_generation_method field.

	Changed the controlled vocabulary terms of complete_sequences.
Replacing complete & untemplated with complete+untemplated and adding
mixed.

	Added the pcr_target field referencing the new PCRTarget schema object.

SequencingRun Schema:

	Added the sequencing_run_id field which serves as the object identifer
field.

	Added the sequencing_files field which links to the RawSequenceData
schema objects defining the raw read data.

RawSequenceData Schema:

	Added the file_type field defining the sequence file type. This field is a
controlled vocabulary restricted to: fasta, fastq.

	Added the paired_read_length field defining mate-pair read lengths.

	Defined the read_direction and paired_read_direction fields as type string.

DataProcessing Schema:

	Replaces the SoftwareProcessing object.

	Added data_processing_id, primary_annotation, data_processing_files,
germline_database and analysis_provenance_id fields.

Version 1.2.1: Oct 5, 2018

Minor patch release.

	Schema gene vs segment terminology corrections

	Added Info object

	Updated cell_subset URL in AIRR schema

Version 1.2.0: Aug 18, 2018

Peer reviewed released of the Rearrangement schema.

	Definition change for the coordinate fields of the Rearrangement and Alignment schema.
Coordinates are now defined as 1-based closed intervals, instead of 0-based half-open
intervals (as previously defined in v1.1 of the schema).

	Removed foreign study_id fields

	Introduced keywords_study field

Version 1.1.0: May 3, 2018

Initial public released of the Rearrangement and Alignment schemas.

	Added required and nullable constrains to AIRR schema.

	Schema definitions for MiAIRR attributes and ontology.

	Introduction of an x-airr object indicating if field is required by MiAIRR.

	Rename rearrangement_set_id to data_processing_id.

	Rename study_description to study_type.

	Added physical_quantity format.

	Raw sequencing files into separate schema object.

	Rename Attributes object.

	Added primary_annotation and repertoire_id.

	Added diagnosis to repertoire object.

	Added ontology for organism.

	Added more detailed specification of sequencing_run, repertoire and
rearrangement.

	Added repertoire schema.

	Rename definitions.yaml to airr-schema.yaml.

	Removed c_call, c_score and c_cigar from required as this is not
typical reference aligner output.

	Renamed vdj_score, vdj_identity, vdj_evalue, and vdj_cigar
to score, identity, evalue, and cigar.

	Added missing c_identity and c_evalue fields to Rearrangement spec.

	Swapped order of N and S operators in CIGAR string.

	Some description clean up for consistency in Rearrangement spec.

	Remove repeated objects in definitions.yaml.

	Added Alignment object to definitions.yaml.

	Updated MiARR format consistency check TSV with junction change.

	Changed definition from functional to productive.

Version 1.0.1: Jan 9, 2018

MiAIRR v1 official release and initial draft of Rearrangement and Alignment schemas.

Data Submission and Query

Data Submission Guides for AIRR-seq studies

There are multiple data repositories that accept submission of AIRR-seq datasets.
Each provides different capabilities but all comply with the MiAIRR standard.

National Center for Biotechnology Information (NCBI)

	MiAIRR to NCBI submission guide

	CEDAR's CAIRR submission pipeline

VDJServer Community Data Portal

	VDJServer Community Data Portal

iReceptor Turnkey Repository

	iReceptor Turnkey Repository

Data Submission for Inferred Genes and Alleles

In 2017, The AIRR Community established the Inferred Allele Review Committee (IARC) to
evaluate inferred alleles for inclusion in relevant germline databases. IARC has worked,
together with colleagues at IMGT and the US National Institutes of Health, to establish a
systematic submission and review process. OGRDB was created and designed to support that
process, and provide a real-time record of affirmed sequences.

Inferred Immune Receptor Genes

	OGRDB

Data Query and Download from the AIRR Data Commons

Submission of AIRR-seq datasets to public data repositories means that other
researchers can query, download and reuse that data for novel analyses.

AIRR Data Commons

The AIRR Data Commons is a network of distributed repositories that store AIRR-seq data and
adhere to the AIRR Community standards. We define the AIRR Data Commons as consisting of
the set of repositories that both:

	Adhere to the AIRR Common Repositories Working Group recommendations [https://github.com/airr-community/common-repo-wg/blob/master/recommendations.md] for promoting, sharing, and use of AIRR-seq data.

	Implement the ADC API as a programmatic mechanism to access that data.

More information on repositories in the AIRR Data Commons and how to query these repositories
can be found on the AIRR Data Commons page:

	AIRR Data Commons

Other Public AIRR-Seq Repositories

There are additional data repositories that provide access to AIRR-seq data but which
did not implement the ADC API for programmatic access. Information about some of these
repositories are provided in a B-T.CR forum post [https://b-t.cr/t/publicly-available-airr-seq-data-repositories/610].

Germline Gene Inference and Usage

	OGRDB provides a list of alleles affirmed by the AIRR Community’s
Inferred Allele Review Committee, together with supporting information.

	VDJbase [https://www.vdjbase.org] provides gene usage information derived from a growing base of AIRR-seq repertoires,
including inferred genotypes and haplotypes.

MiAIRR-to-NCBI Implementation

	Authors

	Christian E. Busse, Florian Rubelt and Syed Ahmad Chan Bukhari

Table of Contents

	Guide for submission of AIRR-seq data to NCBI

	MiAIRR-to-NCBI Submission Manual
	Scope of this document

	Step 1. MiAIRR data submission to BioProject, BioSample and SRA

	Step 2. Processed MiAIRR data submission to GenBank/TLS

	MiAIRR-to-NCBI Specification
	Outline of INSDC reporting procedure

	Element mapping

	References

	Footnotes

	Appendix

Introduction

The MiAIRR standard

The MiAIRR standard (minimal information about adaptive immune receptor
repertoires) is a minimal reporting standard for experiments using
sequencing-based technologies to study adaptive immune receptors (e.g.
T cell receptors or immunoglobulins). It is developed and maintained by
the Minimal Standards Working Group of the Adaptive Immune Receptors
Repertoire (AIRR) Community [http://airr-community.org] [Breden_2017]. The current version (1.0)
of the standard has been recently published [Rubelt_2017] and was
passed by the general assembly at the annual AIRR Community meeting in
December 2017. MiAIRR requires researchers to report six sets of
information:

	study, subject, diagnosis & intervention

	sample collection

	sample processing and sequencing

	raw sequencing data

	data processing

	processed sequences with a basic analysis results

However, MiAIRR only describes the mandatory data items that have to be
reported, but neither provides details how and where to deposit data nor
specifies data types and formats. Therefore this document aims to
provide both a submission manual for users as well as a detailed data
specification for developers.

Guide for submission of AIRR-seq data to NCBI

This site provides a detailed “how-to” guide for submission of AIRR-seq
data to NCBI repositories (BioProject, BioSample, SRA and GenBank).
For other implementations of the MiAIRR standard see here [https://github.com/airr-community/airr-standards].

One of the primary initiatives of the AIRR (Adaptive Immune Receptor
Repertoire) Community has been to develop a set of metadata standards
for the submission of immune receptor repertoire sequencing datasets.
This work has been carried out by the AIRR Community Standards Working
Group. In order to support reproducibility, standard quality control,
and data deposition in a common repository, the AIRR Community has
agreed to six high-level data sets that will guide the publication,
curation and sharing of AIRR-Seq data and metadata: Study and subject,
sample collection, sample processing and sequencing, raw sequences,
processing of sequence data, and processed AIRR sequences. The detailed
data elements within these sets are defined here
(Download as TSV).
The association between these AIRR sets, the associated data elements,
and each of the NCBI repositories is shown below:

[image: ../_images/MiAIRR_data_elements_NCBI_targets.png]

Submission of AIRR sequencing data and metadata to NCBI’s public data
repositories consists of five sequential steps:

	Submit study information to NCBI BioProject [https://submit.ncbi.nlm.nih.gov/subs/bioproject/] using the NCBI web
interface.

	Submit sample-level information to the NCBI BioSample repository [https://submit.ncbi.nlm.nih.gov/subs/biosample/]
using the AIRR-BioSample templates [https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_BioSample_v1.0.xls].

	Submit raw sequencing data to NCBI SRA [https://submit.ncbi.nlm.nih.gov/subs/sra/] using the AIRR-SRA data
templates [https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_SRA_v1.0.xls].

	Generate a DOI for the protocol describing how raw sequencing data
were processed using Zenodo [https://zenodo.org].

	Submit processed sequencing data with sequence-level annotations to
GenBank [https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/] using AIRR feature tags.

The submission manual provides step-by-step instructions
on carrying out these steps for an AIRR study submission.

MiAIRR-to-NCBI Submission Manual

Scope of this document

Provide a user manual describing the submission of AIRR data using the NCBI
reference implementation described in [Rubelt_2017] [https://doi.org/10.1038/ni.3873]. This implementation uses NCBI’s
BioProject, BioSample, Sequence Read Archive (SRA) and GenBank repositories and
metadata standards to report AIRR data.

Step 1. MiAIRR data submission to BioProject, BioSample and SRA

Since we propose to include a combination of raw and processed sequence data,
the AIRR standard will sometimes need to be distributed and linked across
multiple repositories (e.g., data in SRA linked to related data in GenBank).
Besides, the data elements that comprise the standard will be mapped to
ontologies in BioPortal through NIH CDE (Common Data Element) terms. These
linkages will support more sophisticated validation and logical inference.

There are three main alternatives to submit raw AIRR data/metadata to NCBI
repositories: (1) CEDAR’s CAIRR pipeline; (2) NCBI’s Web interface; and (3)
NCBI’s FTP server. These alternatives are described below:

Option 1. Submission via the CEDAR system (CAIRR submission pipeline)

CEDAR’s CAIRR submission pipeline helps investigators and curators to edit and
validate ontology-controlled metadata. This pipeline provides a seamless
interface to transmit SRA datasets to the NCBI SRA and BioSample repositories
from the CEDAR Workbench [https://cedar.metadatacenter.org]. The pipeline
can be directly be accessed at http://cairr.airr-community.org [https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933].
Note that the CEDAR template and template elements used by this pipeline are
publicly available in the following CEDAR folder: All/Shared/Shared by
CEDAR/MiAIRR [https://cedar.metadatacenter.org/dashboard?folderId=https:%2F%2Frepo.metadatacenter.org%2Ffolders%2F4e5ce935-03ea-401a-804c-c38160c560f2].

Submission steps:

	Open CEDAR’s MiAIRR template by clicking on http://cairr.airr-community.org [https://cedar.metadatacenter.org/instances/create/https://repo.metadatacenter.org/templates/ea716306-5263-4f7a-9155-b7958f566933]. If you are not already logged in, this will take you to the CEDAR login panel. If you are a new user, you will have to create an account on the CEDAR Workbench by clicking here [https://auth.metadatacenter.org/auth/realms/CEDAR/login-actions/registration?client_id=cedar-angular-app].

[image: ../_images/CAIRR_login.png]

	After logging in into the system, you will see the ‘MiAIRR’ template. Fill out the template fields with your metadata. Fields with an asterisk (*) are mandatory. Your submission will fail if any mandatory fields are not completed. If information is unavailable for any mandatory field, please enter ‘not collected’, ‘not applicable’ or ‘missing’ as appropriate. Note that you will need to enter a BioProject ID into the field ‘Study ID’. If you do not have a BioProject yet, you can create one at https://submit.ncbi.nlm.nih.gov/subs/bioproject/

[image: ../_images/CAIRR_metadata_1.png]

	Once your metadata is complete, click on the ‘Save’ button to save your metadata into your workspace. You will see a message in a green box confirming that your metadata have been successfully saved, as well as a message in a yellow box letting you know that your metadata have been saved to your personal workspace.

[image: ../_images/CAIRR_metadata_2.png]

	Go to your personal workspace by clicking on the left arrow (top left corner) and then on the ‘Workspace’ link, or by just clicking on: https://cedar.metadatacenter.org

	Once in your workspace, you will see a metadata file called ‘MiAIRR metadata’. That file contains the metadata that you have just created and that you want to submit to the NCBI. Click on the three vertical dots on the top-right corner of the file icon to see the available file options.

[image: ../_images/CAIRR_workspace.png]

	Click on the ‘Submit’ option to open the submission dialog.

[image: ../_images/CAIRR_submit_1.png]

	The ‘NCBI MiAIRR’ option will be automatically selected. Click on ‘Next’ to go to the next step.

[image: ../_images/CAIRR_submit_2.png]

	Click on the ‘Select Files’ button to upload the data files. Note that the names of the selected files must match the names in the metadata file. Otherwise, you will receive an error message when trying to start the submission.

[image: ../_images/CAIRR_submit_3.png]

	Click on the ‘Submit’ button to start the submission. If there are not validation errors, the selected data files and the corresponding metadata will be uploaded to the NCBI servers.

[image: ../_images/CAIRR_submit_4.png]

	Note that the submission may take several hours or even days to be processed by the NCBI. Meanwhile, you will receive status messages about your submission in your workspace (messages icon).

[image: ../_images/CAIRR_messages.png]

	Proceed with deposit of processed data, below.

Citing the CAIRR pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L.
Egyedi, Debra Debra Willrett, John Graybeal, Mark A. Musen, Florian Rubelt, Kei
H. Cheung, and Steven H. Kleinstein. The CAIRR pipeline for submitting
standards-compliant B and T cell receptor repertoire sequencing studies to the
NCBI [https://www.ncbi.nlm.nih.gov/pubmed/30166985]. Frontiers in Immunology
9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877

Tell Us About It

Please let us know how it went! If you are willing, we would love to have your
comments in a short survey [https://www.surveymonkey.com/r/your-metadata-experience], it should just
take 5 minutes or so. We also welcome entry of issues and requests in our
GitHub repository [https://github.com/metadatacenter/cedar-project/issues],
and emails can be sent to cedar-users@lists.stanford.edu. Both of these
resources are publicly visible.

Support or Contact

Having trouble with NCBI submission process through our pipeline? Please email
to Syed Ahmad Chan Bukhari or to Marcos
Martínez-Romero and we will help you sort it
out.

Option 2. Submission via NCBI’s web interface

To facilitate AIRR data submissions to NCBI repositories, we have developed the
NCBI-compliant metadata submission templates both for single and bulk AIRR data
submissions. NCBI provides a web-based interface to create a BioProject and
allows to BioSample, Sequence Read Archive (SRA) and GenBank metadata via
tab-delimited files for single BioProject related data files submission.

Submitting AIRR data and associated metadata to the Bioproject, BioSample and
SRA repositories via NCBI’s web interface follows in general the submission
procedure described in [NCBI_NBK47528] [https://www.ncbi.nlm.nih.gov/books/NBK47528/], but uses AIRR-specific
template for metadata submission:

	Go to https://submit.ncbi.nlm.nih.gov/subs/sra/ and login with your NCBI account (create an account if necessary).

	Click on “create new submission”. You will see a form as below. Fill the form with required information and click on “continue”.

[image: ../_images/bioproject.png]

	If you are submitting for the first time, check “Yes” on the “new BioProject” or “new BioSample” options to create a new project or sample, respectively.

[image: ../_images/sradisplay.png]

	Fill in the project information. Add as much relevant information you can add in description. It will help later in searching the particular submission.

[image: ../_images/fillproject.png]

	The AIRR BioSample template is not yet listed on the NCBI website. The template sheet AIRR_BioSample_V1.0.xls can be downloaded from https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS. Fill in the required field and save the file as tab-delimited text file (.TSV format), then upload it.

	To submit the SRA metadata use the AIRR_SRA_v1.0.xls file. Make sure that the column sample_name uses sample names that match the record in the BioSample template (if new BioSamples are being submitted) or a previously entered record. Also this file must be saved as tab-delimited text file for upload.

	Submit the raw sequence file.

	Complete the submission.

	Proceed with deposit of processed data, below.

Option 3. Submission via NCBI’s FTP server, using a predefined XML template

In addition to the web interface, NCBI provides an FTP-based solution to submit
bulk metadata. The corresponding AIRR XML templates can be found under
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS.
Otherwise users should refer to the current SRA file upload manual
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/. Users planning to
frequently submit AIRR-seq data to SRA using scripts to generate the XML files
MUST ensure that the templates are identical to the current upstream version on
Github.

Step 2. Processed MiAIRR data submission to GenBank/TLS

Processed sequence data will be submitted to the “Targeted Locus Study” (TLS)
section of GenBank. The details of this submission process are currently still
being finalized. Basically the procedure is identical to a conventional GenBank
submission with the exception of additional keywords marking it as TLS
submission.

Non-productive records should be removed before the data submission or use an
alternative annotation as described in the specification document.

	Generating MiAIRR compliant GenBank/TLS submissions: https://changeo.readthedocs.io/en/stable/examples/genbank.html

GenBank provides multiple tools (GUI and command-line) to submit data:

	BankIt, a web-based submission tool with wizards to guide the submission process

	Sequin, NCBI’s stand-alone submission tool with wizards to guide the submission process is available by FTP for use on for Windows, macOS and Unix platforms.

	Tbl2asn is the recommended tool for the bulk data submission. It is a command-line program that automates the creation of sequence records files (.sqn) for submission to GenBank, driven by multiple tabular unput data files. Documentation and download options can be found under https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/.

MiAIRR-to-NCBI Specification

Outline of INSDC reporting procedure

TODO: Outline the reporting procedure for data sets 1-4

In terms of standard compliance it is currently REQUIRED 1 to
deposit information for MiAIRR data sets 5 and 6 in general-purpose
sequence repositories for which an AIRR-accepted specification on
information mapping MUST exist. However, users should note that in the
future additional AIRR-sanctioned mechanisms for data deposition will
become available as specified by the AIRR Common Repository Working
Group. The mapping of data items in MiAIRR data sets 5 and 6 differs
substantially in size and structure and therefore requires distinct
reporting procedures:

	Set 5: This is free text information describing the work flow,
tools and parameters of the sequence read processing. It is
REQUIRED that this information is deposited as a freely available
document, permanently linked via a DOI. Note that is currently
neither a specific format for this document nor a recommended
service provider for obtaining the DOI.

	Set 6: This is specified to contain the consensus sequence and the
following information obtained from the initial analysis: V, D and
J segment, C region and IMGT-JUNCTION 2 [LIGMDB_V12]. These will
be deposited in a general-purpose INSDC repository, using the record
structure described below.

INSDC records were originally designed to hold individual Sanger
sequences. Therefore each record will contain a header with information
largely identical between all records in an AIRR sequencing study.
Records can be concatenated for uploading.

The INSDC feature table (FT) [INSDC_FT] is a sequence annotation
standard used within the INSDC records and assigns information to
specified positions on the reported sequence string. In regard to the
correct location of the provided annotation, it should especially be
noted that some V(D)J inference tools will return coordinates referring
to the reference instead of the query sequence. As the sequence
submitted in a record MUST be identical to the query sequence, the
positions provided by the V(D)J inference tool MUST, if necessary, be
translated back onto the query sequence. In case the start and/or end
of a feature cannot be reliably determined or is not present in the
reported sequence 3, open intervals CAN be used for reporting.
However, open intervals MUST NOT be used to deliberately obfuscate
known positions.

In addition to the required information specified in Table_1, users
CAN use all valid FT keys/qualifiers to provide further annotation for
the reported sequences. However, a record MUST still be compliant with
this specification, if such OPTIONAL information would be removed,
meaning that it is FORBIDDEN to move REQUIRED information into OPTIONAL
keys/qualifiers. In addition, users MUST NOT use keys/qualifiers that
could create ambiguity with the keys/qualifiers specified here.

	element

	FT key

	FT qualifier

	FT value

	REQUIRED (if used by original study)

	V segment

	V_segment

	/gene

	see [Feature table]

	yes

	D segment

	D_segment

	/gene

	see [Feature table]

	yes; if IGH, TRB or TRD sequence

	J segment

	J_segment

	/gene

	see [Feature table]

	yes

	C region

	C_region

	/gene

	see [Feature table]

	yes

	JUNCTION

	CDS

	/function

	“JUNCTION”

	yes

Table 1: Summary of the mapping of mandatory AIRR MiniStd data set 6
elements to the INSDC feature table (FT). Note that the overall record
will contain additional information, such as cross-references linking
the deposited sequence reads and metadata.

Element mapping

The broad strategy of element mapping to the various repositories is
depicted in Table_2.

	MiAIRR data set / subset

	target repository

	1 / study

	BioProject

	1 / subject

	1 / diagnosis & treatment

	2 / sample

	BioSample

	3 / processing (cells)

	3 / processing (nucleic acids)

	SRA

	4 / raw sequences

	5 / processing (data)

	user-defined DOI

	6 / Processed sequences & annotations

	Genbank

Table 2: Summary of the mapping of MiAIRR data sets to the various
repositories

Mapping of data sets 1-4 to BioProject/BioSample/SRA

TODO: Include item-by-item mapping [NCBI_NBK47528]

Mapping of data set 5 to a user-defined repository

While several mandatory item have been defined in this data set, there
is currently no mapping as the reporting procedure is implemented as a
free text document. AIRR RECOMMENDS to use Zenodo [https://zenodo.org] for deposition of
these documents, as it is hosted by CERN and supports versioned DOIs
(termed “concept” DOI). Users SHOULD use the existing AIRR tag [https://zenodo.org/communities/airr]
when submitting documents to increase the visiblity of their study.

Mapping of data set 6 to INSDC

Users should note that while the FT is standardized, the overall
sequence record structure diverges between the three INSDC
repositories. The following section refers to items at or above the
hierarchy level of the FT using the GenBank specification [GENBANK_FF],
the corresponding designations of ENA [ENA_MANUAL] are provided in
parenthesis 11.

Record header

The header MUST contain all of the following elements:

	REQUIRED: header structure as specified by the respective INSDC
repository [ENA_MANUAL] [GENBANK_FF] [GENBANK_SR].

	FORBIDDEN: The DEFINITION entry will be autopopulated by
information provided in the FT part (misc_feature, /note).

	REQUIRED: identifier of the associated SRA record (MiAIRR data
set 4) as DBLINK (ENA: DR line). Note that it is not
possible to refer to individual raw reads, only the full SRA
collections can be linked.

	REQUIRED: in the KEYWORDS field (ENA: KW line):

	the term “TLS”

	the term “Targeted Locus Study”

	the term “AIRR”

	the term “MiAIRR:<x>.<y>” with <x> and <y> indicating the used
version and subversion of the MiAIRR standard.

	REQUIRED: DOI of the associated free-text record containing the
information on data processing (MiAIRR data set 5) as REMARK
within a REFERENCE 4 (ENA: RX line).

	OPTIONAL: The use of structured comments [https://www.ncbi.nlm.nih.gov/genbank/structuredcomment/] is currently evalutated
for use in future versions of the MiAIRR standard.

Feature table

The feature table, indicated by FEATURES (ENA: RX line), MUST or
SHOULD contain the following keys/qualifiers:

General sequence information

	REQUIRED: key source containing the following qualifiers:

	REQUIRED: qualifier /organism (required by [INSDC_FT]).

	REQUIRED: qualifier /mol_type (required by [INSDC_FT]).

	REQUIRED: qualifier /citation pointing to the reference in the
header (REFERENCE, ENA: RN line) that links to the data
set 5 document.

	REQUIRED: qualifier /rearranged 5.

	REQUIRED: qualifier /note containing the AIRR_READ_COUNT
keyword to indicate the read number used for the consensus. The
criteria for selecting these reads and the procedure used to
build the consensus SHOULD be reported as part of data set 5.

	OPTIONAL: qualifier /note containing the AIRR_INDEX_CELL
keyword for single-cell experiments. The value of the keyword
SHOULD only contain alpha-numeric characters and MUST be
identical for sequences derived from the same cell of origin.

	RECOMMENDED: qualifiers /assembly_gap and
/linkage_evidence to annotate non-overlapping paired-end
sequences.

	RECOMMENDED: qualifier /strain, if /organism is “Mus
musculus”.

Note that additional qualifiers might be REQUIRED by GenBank to
harmonize the GenBank record with the BioSample referenced by it in the
header. A list of known BioSample keyword and GenBank qualifiers that
MUST contain the same information can be found below. Whether (and in
which direction) the existence of a keyword/qualifiers triggers
a requirement in the corresponding record is currently unknown. Please
report any undocumented requirements surfacing during submission to the
MiAIRR team.

	BioSample keyword

	GenBank FT qualifier

	cell type

	/cell_type

	isolate

	/isolate

	sex

	/sex

	tissue

	/tissue_type

Segment and region annotation

The following keys MUST be used for annotation according to their FT
definition, if the respective item has been reported by the original
study:

	REQUIRED: key V_region. Note that this key MUST NOT be used to
annotate V segment leader sequence 6 7.

	REQUIRED: key misc_feature with coordinates identical to those
given in V_region. This key MUST contain a /note qualifier
that contains a string as value, which describes the general type of
variable region described by the record. The string MUST match the
regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain variable region$/

This string will be used as record heading upon import into Genbank.
Note that while this behavior of Genbank is undocumented, the
procedure has been approved by NCBI.

	REQUIRED: key V_segment, both coordinates MUST be within
V_region. Note that this key MUST NOT be used to annotate
V segment leader sequence 6 7.

	REQUIRED: key D_segment, both coordinates MUST be within
V_region. This key is only REQUIRED for sequences of applicable
loci (IGH, TRB, TRD 8). In the rare case of rearrangements
using two D segments, this key SHOULD occur twice, but the
coordinates of both keys MUST NOT overlap.

	REQUIRED: key J_segment, both coordinates MUST be within
V_region.

	REQUIRED: key C_region, both coordinates MUST NOT overlap with
V_region. If the region can be unambiguously identified, the
respective official gene symbol MUST be reported using the /gene
qualifier. If only the isotype (e.g. IgG) but not the subclass
(e.g. IgG1) can be identified, a truncated gene symbol (e.g. IGHG
instead of IGHG1) SHOULD be reported instead 9.

Each [VDJ]_segment key MUST or SHOULD contain the following
qualifiers:

	REQUIRED: qualifier /gene, containing the designation of the
inferred segment, according to the database in the first
/db_xref entry. This qualifier MUST NOT contain any allele
information.

	RECOMMENDED: qualifier /allele, containing the designation of
the inferred allele, according to the database in the first
/db_xref entry. Note that while INSDC does not specify any
format for this qualifier, AIRR compliance REQUIRES that this field
only contains the allele string, i.e. without the gene name or
separator characters.

	REQUIRED: qualifier /db_xref, linking to the reference record of
the inferred segment in a germline database [INSDC_XREF]. This
qualifier can be present multiple times, however only the first
entry is mandatory and MUST link to the database used for the
segment designation given with /gene and (if present)
/allele.

Note on referencing IMGT databases: There are two IMGT database
available in the controlled vocabulary [INSDC_XREF]:

	IMGT/GENE-DB: This is the genome database, which requires
that a reference sequence has been mapped to genomic DNA. When
using this database as reference, note that you can only refer to
the gene symbol not the allele. In the case of ambiguous
allele calls (see below) this means that you MUST NOT annotate any
/allele at all. Nevertheless, this SHOULD be the default
database for applications using IMGT as reference, as the sequence
for each gene/allele is unique.

	IMGT/LIGM: This database collects sequences described in
INSDC databases (GenBank/ENA/DDBJ). As it might contain multiple
entries representing a given gene/allele, it is NOT RECOMMENDED
to use it unless that inference gene/allele is only present in
IMGT/LIGM and not in IMGT/GENE-DB.

	RECOMMENDED: /inference to indicate the tool used for segment
inference. The description string SHOULD use COORDINATES as
category and aligment as type [INSDC_FT].

Annotation of sequences producing multiple hits with identical scores
is problematic and is ultimately at the discretion of the depositing
researcher. However, the algorithms used for tie-breaking SHOULD be
documented in data set 5. In addition, the following procedures MUST be
followed:

	Certain gene, ambiguous allele: If multiple alleles of the same gene
match to the sequence, the /allele qualifier MUST NOT be used.
As the REQUIRED /db_xref qualifier will ofter refer to a
specific allele, all equal hits SHOULD be annoted via this qualifier
(which can be use multiple times). Also see the note on the
limitations of the IMGT/GENE-DB reference database above.

	Ambiguous gene: Pick one, annotate using the qualifiers as noted for
ambiguous allele.

JUNCTION annotation

INSDC does currently not define a key to annotate JUNCTION 10.
Therefore the following procedure MUST be used:

	REQUIRED: key CDS, indicating the positions of

	the first bp of the first AA of JUNCTION

	the last bp of the last AA of JUNCTION as determined by the
utilized V(D)J inference tool.

Open coordinates MUST be used for both coordinates to allow for
automated creation of the /translated qualifier providing the
peptide sequence. Further note that a non-productive JUNCTION can
have a length not divisible by three. This key contains the
following qualifiers:

	REQUIRED: qualifier /codon_start with the assigned value “1”.

	REQUIRED: qualifier /function with the assigned value
“JUNCTION”.

	REQUIRED: qualifier /product with an assigned value matching
the regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain junction region$/

The variable region referred to in the string MUST be the same
as the one given in the misc_feature key.

	RECOMMENDED: qualifier /inference, indicating the tool used
for positional inference. The description string SHOULD use
COORDINATES as category and protein motif as type
[INSDC_FT].

	FORBIDDEN: qualifier /translated, which will be automatically
added by Genbank.

Note that the complete CDS key will be removed by Genbank if the
translation contains stop codons or to many “N” (exact number
unknown). As such a record will lack a central piece of REQUIRED
information it is RECOMMENDED that submitters either

	remove the complete record or

	replace the CDS with a misc_feature key while at the same
time removing the /codon_start and /product qualifiers

upfront, as described in the submission manual. If the submitter
chooses the replacement option, it has to be ensured that the
annotated coordinates are actually valid and not affect by the frame-
shift.

Record body

The record body starts after ORIGIN (ENA: SQ line) and MUST
contain:

	the consensus sequence

References

	LIGMDB_V12

	IMGT-ONTOLOGY definitions.
<http://www.imgt.org/ligmdb/label#JUNCTION>

	INSDC_FT(1,2,3,4,5)

	The DDBJ/ENA/GenBank Feature Table Definition.
<http://www.insdc.org/documents/feature-table>

	ENA_MANUAL(1,2)

	European Nucleotide Archive Annotated/Assembled
Sequences User Manual.
<http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt>

	GENBANK_FF(1,2)

	GenBank Flat File Format.
<https://ftp.ncbi.nih.gov/genbank/gbrel.txt>

	GENBANK_SR

	GenBank Sample Record.
<https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html>

	INSDC_XREF(1,2)

	Controlled vocabulary for /db_xref qualifier.
<http://www.insdc.org/documents/dbxref-qualifier-vocabulary>

	NCBI_NBK47528

	SRA Handbook.
<https://www.ncbi.nlm.nih.gov/books/NBK47528/>

Footnotes

	1

	See the “Glossary” section on how to interpret term written in
all-caps.

	2

	Note that according to IMGT definition this is a superset of the
CDR3.

	3

	This can occur e.g. in paired-end sequencing of head-to-head
concatenated transcripts, where the 5’ end of the V segment is
present in the amplicon, but cannot be precisely determined.

	4

	The current GenBank record specification does not include a
separate key for DOIs.

	5

	Although FT does specify a /germline qualifier for
non-rearranged sequences it has not been included in this
specification as there is no obvious use case for it. In addition,
non-rearranged transcripts would lack a number of other features
that are assumed to be present, first of all the JUNCTION.

	6(1,2)

	The FT explicitly states that V_segment does not cover
the leader sequence. The definition of V_region is slightly more
ambiguous, however in combination with the V_segment definition,
it becomes clear that the leader is also not considered to be a part
of V_region. Therefore the leader sequence should be implicitly
annotated as the region between the start of CDS and the start of
V_region.

	7(1,2)

	Previously the leader was implicitly annotated as the region
between CDS start and V_region start. As it was decided to drop
the “global” CDS to make it easier to accommodate for INDELs, this
is currently not an option anymore.

	8

	For simplicity, this document only uses human gene symbols. For
non-human species the specification pertains to the respective
orthologs.

	9

	This approach has been approved by NCBI.

	10

	NCBI confirmed that once there would be enough datasets using
the JUNCTION tag as specified here, a motion for an
INSDC-sanctioned key could be initiated.

	11

	Note that there is currently no submission specification for
ENA. This information is provided for reference only and will be
moved to a separate document in the future.

Appendix

Example record (GenBank format)

LOCUS AB123456 420 bp mRNA linear EST 01-JAN-2015
DEFINITION TLS: Mus musculus immunoglobulin heavy chain variable region,
 sequence.
ACCESSION AB123456
VERSION AB123456.7
KEYWORDS TLS; Targeted Locus Study; AIRR; MiAIRR:1.0.
SOURCE Mus musculus
 ORGANISM Mus musculus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires;
 Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 420)
 AUTHORS Stibbons,P.
 TITLE Section 5 information for experiment FOO1
 JOURNAL published (01-JAN-2000) on Zenodo
 REMARK DOI:10.1000/0000-12345678
REFERENCE 2 (bases 1 to 420)
 AUTHORS Stibbons,P.
 TITLE Direct Submission
 JOURNAL Submitted (01-JAN-2000) Center for Transcendental Immunology,
 Unseen University, Ankh-Morpork, 12345, DISCWORLD
DBLINK BioProject: PRJNA000001
 BioSample: SAMN000001
 Sequence Read Archive: SRR0000001
FEATURES Location/Qualifiers
 source 1..420
 /organism="Mus musculus"
 /mol_type="mRNA"
 /strain="C57BL/6J"
 /citation=[1]
 /rearranged
 /note="AIRR_READ_COUNT:123”
 V_region 1..324
 misc_feature 1..324
 /note="immunoglobulin heavy chain variable region"
 V_segment 1..257
 /gene="IGHV1-34"
 /allele="01"
 /db_xref="IMGT/LIGM:AC073565"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 D_segment 266..272
 /gene="IGHD2-2"
 /allele="01"
 /db_xref="IMGT/LIGM:AJ851868"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 J_segment 291..324
 /gene="IGHJ4"
 /allele="01"
 /db_xref="IMGT/LIGM:V00770"
 /inference="COORDINATES:alignment:IgBLAST:1.6"
 CDS <258..>290
 /codon_start=1
 /function="JUNCTION"
 /product="immunoglobulin heavy chain junction region"
 /inference="COORDINATES:protein motif:IgBLAST:1.6"
 /translated="CARAGVYDGYTMDYW"
 C_region 325..420
 /gene="Ighg2c"
ORIGIN
 1 agcctggggc ttcagtgaag atgtcctgca aggcttctgg ctacacattc actgactata
 61 acatacactg ggtgaagcag agccatggaa agagccttga gtggattgca tatattaatc
 121 ctaacaatgg tggttatggc tataacgaca agttcaggga caaggccaca ttgactgtcg
 181 acaggtcatc caacacagcc tacatggggc tccgcagcct gacctctgag gactctgcag
 241 tctattactg tgcaagagcg ggagtttacg acggatatac tatggactac tggggtcaag
 301 gaacctcagt caccgtctcc tcagccaaaa caacagcccc atcggtctat ccactggccc
 361 ctgtgtgtgg aggtacaact ggctcctcgg tgactctagg atgcctggtc aagggcaact
//

Glossary

	MUST / REQUIRED: Indicates that an element or action is necessary to
conform to the standard.

	SHOULD / RECOMMENDED: Indicates that an element or action is
considered to be best practice by AIRR, but not necessary to conform
to the standard.

	CAN / OPTIONAL: Indicates that it is at the discretion of the user
to use an element or perform an action.

	MUST NOT / FORBIDDEN: Indicates that an element or action will be in
conflict with the standard.

Abbreviations

	AA: amino acid

	bp: base pair

	DOI: digital object identifier

	FT: INSDC Feature Table

	INSDC: International Nucleotide Sequence Database Collaboration

	SRA: sequence read archive

CAIRR Pipeline

Introduction: The CAIRR pipeline for submitting standards-compliant B and T cell receptor repertoire sequencing studies to the NCBI

AIRR sequencing (AIRR-seq) has tremendous potential to understand the dynamics
of the immune repertoire in vaccinology, infectious disease, autoimmunity, and
cancer biology. The adaptation of high-throughput sequencing (HTS) for AIRR
(Adaptive Immune Receptor Repertoire) studies has made possible to characterize
the AIRR at unprecedented depth and the outcome of such sequencing produces big
data. Effective sharing of AIRR-seq big data could potentially reveal amazing
scientific insights. The AIRR Community has proposed MiAIRR (Minimum
information about an Adaptive Immune Receptor Repertoire Sequencing
Experiment), a standard for reporting AIRR-seq studies. The MiAIRR standard has
been implemented using the National Center for Biotechnology Information (NCBI)
repositories. Submissions of AIRR-seq data to the NCBI repositories typically
use a combination of web-based and flat-file templates and include only a
minimal amount of terminology validation. As a result, AIRR-seq studies at the
NCBI are often described using inconsistent terminologies, limiting scientists’
ability to access, find, interoperate, and reuse the data sets and to
understand how the experiments were performed. CEDAR (Center for Expanded Data
Annotation and Retrieval) develops technologies involving the use of data
standards and ontologies to improve metadata quality. In order to improve
metadata quality and ease AIRR-seq study submission process, we have developed
an AIRR-seq data submission pipeline named CEDAR-AIRR (CAIRR). CAIRR leverages
CEDAR’s technologies to: i) create web-based templates whose entries are
controlled by ontology terms, ii) generate and validate metadata and iii)
submit the ontology-linked metadata and sequence files (FASTQ) to the NCBI
BioProject, BioSample, and Sequence Read Archive (SRA) databases. Thus, CAIRR
provides a web-based metadata submission interface that supports compliance
with MiAIRR standards. The interface enables ontology-based validation for
several data elements, including: organism, disease, cell type and subtype, and
tissue. This pipeline will facilitate the NCBI submission process and improve
the metadata quality of AIRR-seq studies.

Submission Steps

The submission steps are described in the MiAIRR-to-NCBI Submission Manual:
Option 1. Submission via the CEDAR system (CAIRR submission pipeline).
You will need a CEDAR system account; you can self-register at
https://cedar.metadatacenter.org. You will also need the identifier of a
BioProject already entered in the NCBI BioProject database.

Citing the MiAIRR Pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L.
Egyedi, Debra Debra Willrett, John Graybeal, Mark A. Musen, Florian Rubelt, Kei
H. Cheung, and Steven H. Kleinstein. The CAIRR pipeline for submitting
standards-compliant B and T cell receptor repertoire sequencing studies to the
NCBI [https://www.ncbi.nlm.nih.gov/pubmed/30166985]. Frontiers in Immunology
9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877

Tell Us About It

Please let us know how it went! If you are willing, we would love to have your
comments in a short survey [https://www.surveymonkey.com/r/your-metadata-experience], it should just
take 5 minutes or so.

We also welcome entry of issues and requests in our github repository issues [https://github.com/metadatacenter/cedar-project/issues], and emails can be
sent to cedar-users@lists.stanford.edu. Both of these resources are publicly
visible.

Support or Contact

Having trouble with NCBI submission process through our pipeline? Please email
to Syed Ahmad Chan Bukhari or to Marcos
Martínez-Romero and we will help you sort it
out.

Introduction to VDJServer

VDJServer is a cloud-based analysis portal for immune repertoire sequence data that
provides access to a suite of tools for a complete analysis workflow, including modules
for preprocessing and quality control of sequence reads, V(D)J gene assignment,
repertoire characterization, and repertoire comparison. VDJServer also provides
sophisticated visualizations for exploratory analysis. It is accessible through a standard
web browser via a graphical user interface designed for use by immunologists, clinicians,
and bioinformatics researchers. VDJServer provides a data commons for public sharing of
repertoire sequencing data, as well as private sharing of data between users.

	VDJServer website [https://vdjserver.org]

	VDJServer Community Data Portal [https://vdjserver.org/community]

	Email VDJServer for information about submission of your study data.

References

	Christley_2018

	Christley S et al. VDJServer: A Cloud-Based Analysis Portal and Data Commons
for Immune Repertoire Sequences and Rearrangements. Front Immunol 9:976 (2018)
DOI: 10.3389/fimmu.2018.00976 [https://doi.org/10.3389/fimmu.2018.00976]

Introduction to iReceptor

iReceptor is a platform for storing, sharing, and exploring AIRR-seq data according to
the AIRR Community standards.

	iReceptor Website [http://www.ireceptor.org] (General information)

	iReceptor Gateway [https://gateway.ireceptor.org] (AIRR Data Commons data query and federation)

	iReceptor Repositories [http://www.ireceptor.org/repositories] (AIRR Data Commons repositories)

	iReceptor Turnkey GitHUb [https://github.com/sfu-ireceptor/turnkey-service-php] (Software)

	Email iReceptor (Contact).

References

	Corrie_2018

	Corrie et al. iReceptor: A platform for querying and analyzing antibody/B‐cell
and T‐cell receptor repertoire data across federated repositories.
Immunol Rev. 2018 Jul;284(1):24-41. DOI: 10.1111/imr.12666 [https://doi.org/10.1111/imr.12666]

OGRDB - reference database of inferred immune receptor genes

In recent years it has become possible to sequence immune receptor repertoires
(immunoglobulins and T cell receptors) at great depth. The accurate analysis of these
repertoires requires a comprehensive understanding of the germline genes that give rise
to the repertoire through V(D)J gene recombination.

Even for well-studied species such as humans and mice, our knowledge of allelic variation
is incomplete. Identifying new immunoglobulin and T cell receptor polymorphisms from the
genome using traditional methods is technically challenging, because of the complex sequence
architecture and repetitive nature of these loci. More recently, methods have been developed
to infer novel sequences and alleles from sequenced repertoires.

The Adaptive Immune Receptor Repertoire (AIRR) Community was formed to promote and share
good practice in adaptive immune repertoire sequencing. In 2017, it established the Inferred
Allele Review Committee (IARC) to evaluate inferred alleles for inclusion in relevant
germline databases. IARC’s work is outlined in more detail in a poster, which was presented
at a Systems Immunology Workshop at the University of Surrey, England, in March 2018, and
in a recent paper. IARC has worked, together with colleagues at IMGT and the US National
Institute of Health, to establish a systematic submission and review process. OGRDB was
created and designed to support that process, and provide a real-time record of affirmed
sequences. Affirmed sequences will be listed under the Sequences tab above, and the
submissions that underpin them will be found under the Submissions tab. You can make
your own submissions by following the steps below.

How to submit your sequences

As a first step, IARC is now ready to review submissions of inferred human IGHV genes and
alleles. These sequences may be novel, or may extend incomplete sequences currently in the
IMGT reference directories. Researchers interested in submitting sequences should:

Submit sequence and data to Genbank or ENA, following the

	The Genbank/ENA Workflow.

Submit the inferred sequences to IARC via OGRDB, following the

	OGRDB Submission Guide [https://ogrdb.airr-community.org/render_page/ogre_guide.html]

Additional information is available at the

	OGRDB Website [https://ogrdb.airr-community.org]

References

	Ohlin_2019

	Ohlin M et al. Inferred Allelic Variants of Immunoglobulin Receptor Genes:
A System for Their Evaluation, Documentation, and Naming. Front Immunol 10:435 (2019)
DOI: 10.3389/fimmu.2019.00435 [https://doi.org/10.3389/fimmu.2019.00435]

Submission of IARC gene inference data to NCBI

General outline

IARC submission currently follows a “INSDC first” approach, means that
all sequence data related to the reported inference is REQUIRED to be
properly deposited in a general purpose sequence repository before it is
reviewed by IARC. The submitter needs to complete the initial steps of
submission to one of the INSDC repositories. Upon submission to IARC,
some of this data will be pulled in from NCBI (TODO: What kind of data
can we actually pull down from INSDC?)

The aim of this procedure is to ensure that inferences reviewed by
IARC are public and will remain available in the long run. It is however
explicitly not the aim to provide data that deterministically will
yield the same inference results.

Deposition of inferred gene data at NCBI

At the end of the deposition process there should be three types of
records present at NCBI:

	A single record containing the final and full-length inferred
sequence. The record is deposited in one of the following:

	Genbank: All inferences that have been performed on the
submitters own data CAN be submitted as [???] to Genbank. Note
that Genbank typically only holds data that has a physical
correlate which is not necessarily true for inferred sequences.
Nevertheless NCBI currently accepts this as a kind of consensus
building if it is performed on your own data. The Genbank record
MUST link to the select set record (see 3.) via the
DBLINK/DR field. Genbank records will be publicly available
independent of other publications. Note that the for Genbank, the DBLINK field does not appear to be available through the BankIt [https://www.ncbi.nlm.nih.gov/WebSub/?tool=genbank] submission interface. You can use Tbl2asn and Sequin, and edit the DBLINK field manually (as “Sequence Read Archive” is not one of the options on the template creation page [https://submit.ncbi.nlm.nih.gov/genbank/template/submission/]. A sample Genbank deposit can be found under accession MK321694 [https://www.ncbi.nlm.nih.gov/nuccore/MK321694].

	TPA (Third-party annotation): A segment of Genbank dedicated
inferences. Also the TPA record MUST link to the select set
record (see 3.) via the DBLINK/DR field. Note that in contrast
to Genbank, TPA does REQUIRE a peer-reviewed publication
describing the details of the inference process before the record
will be made publicly available. A sample TPA deposit can be found under accession BK01573 [https://www.ncbi.nlm.nih.gov/nuccore/BK010573].

The format for both record types the Genbank format (link) with
a standardized feature table (FT). Note that your initial submission
MUST NOT contain any potential name for the gene as this will be
assigned by IARC later on.

TODO: Is there any metadata that should be provided into the GB
record?

	One or multiple SRA records containing all raw reads of the
the respective sequencing run. Note that if you are performing
inference using third-party data, these records MUST be submitted
by the original owner of the data. These record type will typically
be present before the other. The metadata annotation of the records
SHOULD be MiAIRR compliant [Rubelt et al.].

	One or multiple SRA records containing the select set of reads
from (2). The aim of these records is to document the number,
quality, coverage and diversity of the reads in a dataset that
potentially support the inference. This means that the
select set SHOULD be a superset of the reads that support the
inference. It is NOT REQUIRED that inference tools deterministically
return the inferred allele upon being fed with the select set.
Generation of the select set from the complete set is described
below. When submitting the select set to SRA the metadata
context, i.e. the original links to project, sample and
(if possible) experiment) SHOULD be maintained. Reads originating
from multiple subjects or samples MUST NOT be pooled into a single
new entry. The new record SHOULD be titled “Reads from
<original_run_accession> supporting inference of Homo sapiens
immunoglobulin heavy chain variable gene” and contain a design
description, e.g., “Experimental workflow as described in original
SRA/ENA record [<run_accession>]. Gene inference was performed
using <software+version+parameters>. The reported reads were
selected based on <selection_criteria>.”

NOTE: It is reasonably likely, in the short term, that you will encounter questions from the SRA/ENA/Genbank staff about the nature of these deposits. If so, you can respond that they are made as part of a community effort to document novel alleles with an emphasis on transparency in data provenance. You can link to the IARC page [https://www.antibodysociety.org/inferred-allele-review-committee-iarc/] and note that we worked together with IMGT and Genbank/TPA staff in designing this procedure.

Generating the select set

Below is the current procedure describing how to generate a select
set using general purpose tools. This procedure was designed in a
rather generic fashion so that it is easy to implement and does NOT
REQUIRE inference tools to provide their own mechanisms. Note that it
is currently assumed that the procedure is not fully deterministic,
i.e. the select set cannot simply be generated using the complete
read data and the inferred sequence, as there are additional filter
criteria that apply. In addition the select set SHOULD not be
subject to any modifications that are not listed below. This includes
UMI-based consensus building or other aggregation steps that are not
fully transparent to a third-party.

	Assemble paired-end reads. The two reads MUST overlap. Recommended
tool: PandaSeq

	Perform PHRED filtering that is equivalent to the one performed by
inference pipeline. Recommended tool: Immcantation suite

	Perform a blastn search using the data from (2.) as query and bp
1-312 of the inferred gene as reference library. Require matches to be
full-length and >99.6% ID. Record all matching read ID. Recommended
tool: NCBI BLAST

	Select the reads with the read ID found in (3.) from the original
unmerged FASTQs. Note that each select set MUST be derived from
a single donor and sample. Recommended tool: Christian’s cryptic
extractor script

	Submit the select set to SRA

AIRR Data Commons

The use of high-throughput sequencing for profiling B-cell and T-cell
receptors has resulted in a rapid increase in data generation. It is
timely, therefore, for the Adaptive Immune Receptor Repertoire (AIRR)
community to establish a clear set of community-accepted data and
metadata standards; analytical tools; and policies and practices for
infrastructure to support data deposit, curation, storage, and
use. Such actions are in accordance with international funder and
journal policies that promote data deposition and data sharing – at a
minimum, data on which scientific publications are based should be
made available immediately on publication. Data deposit in publicly
accessible databases ensures that published results may be
validated. Such deposition also facilitates reuse of data for the
generation of new hypotheses and new knowledge.

The AIRR Common Repository Working Group (CRWG) has developed a set of
recommendations [https://github.com/airr-community/common-repo-wg/blob/master/recommendations.md] that promote the deposit, sharing, and use
of AIRR sequence data. These recommendations were refined following
community discussions at the AIRR 2016 and 2017 Community Meetings and
were approved through a vote by the AIRR Community at the AIRR
Community Meeting in December 2017. Updates to these recommendations have continued,
with the latest set of Recommendations ratified at the AIRR Community meeting in May 2019.

In May 2020, the AIRR Community released the first verion of the AIRR Data Commons
Application Programming Interface (ADC API), a specification for programmatic access to
query and download AIRR-seq data from repositories that adhere to the AIRR Standards. We define
the AIRR Data Commons as consisting of the set of repositories that:

	adhere to the CRWG recommendations for promoting, sharing, and use of AIRR-seq data, and

	that implement the ADC API as a programmatic mechanism to access that data.

This page provides a central location for the community to discover resources that belong to the
AIRR Data Commons.

AIRR Data Commons Repositories

These data repositories all implement the AIRR Data Commons (ADC) API programmatic access to
query and download AIRR-seq data.

	iReceptor Public Archive

	VDJServer Community Data Portal

Querying the AIRR Data Commons

Each of the repositories above can be queried directly using the ADC API. In addition, the
following tools and platforms implement web based user interfaces that use the ADC API to query repositories
in the AIRR Data Commons:

	iReceptor Gateway

There are query and analysis use cases and
a set of example queries available for the
AIRR Data Commons and the ADC API.

Software

Table of Contents

	 Python Library
	API Reference

	Commandline Tools

	Release Notes

	Installation

	Quick Start

	 R Library
	Usage Vignette

	Reference Manual

	Release Notes

	Download & Installation

	Dependencies

	Authors

	License

	 ADC API Reference Implementation

AIRR Python Reference Library

The airr reference library provides basic functions and classes for
interacting with AIRR Community Data Representation Standards, including tools
for read, write and validation.

Table of Contents

	API Reference

	Commandline Tools

	Release Notes

Installation

Install in the usual manner from PyPI:

> pip3 install airr --user

Or from the downloaded [https://github.com/airr-community/airr-standards]
source code directory:

> python3 setup.py install --user

Quick Start

Reading AIRR Repertoire metadata files

The airr package contains functions to read and write AIRR repertoire metadata
files. The file format is either YAML or JSON, and the package provides a
light wrapper over the standard parsers. The file needs a json, yaml, or yml
file extension so that the proper parser is utilized. All of the repertoires are loaded
into memory at once and no streaming interface is provided:

import airr

Load the repertoires
data = airr.load_repertoire('input.airr.json')
for rep in data['Repertoire']:
 print(rep)

Why are the repertoires in a list versus in a dictionary keyed by the repertoire_id?
There are two primary reasons for this. First, the repertoire_id might not have been
assigned yet. Some systems might allow MiAIRR metadata to be entered but the
repertoire_id is assigned to that data later by another process. Without the
repertoire_id, the data could not be stored in a dictionary. Secondly, the list allows
the repertoire data to have a default ordering. If you know that the repertoires all have
a unique repertoire_id then you can quickly create a dictionary object using a
comprehension:

rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] }

Writing AIRR Repertoire metadata files

Writing AIRR repertoire metadata is also a light wrapper over standard YAML or JSON
parsers. The airr library provides a function to create a blank repertoire object
in the appropriate format with all of the required fields. As with the load function,
the complete list of repertoires are written at once, there is no streaming interface:

import airr

Create some blank repertoire objects in a list
reps = []
for i in range(5):
 reps.append(airr.repertoire_template())

Write the repertoires
airr.write_repertoire('output.airr.json', reps)

Reading AIRR Rearrangement TSV files

The airr package contains functions to read and write AIRR rearrangement files
as either iterables or pandas data frames. The usage is straightforward,
as the file format is a typical tab delimited file, but the package
performs some additional validation and type conversion beyond using a
standard CSV reader:

import airr

Create an iteratable that returns a dictionary for each row
reader = airr.read_rearrangement('input.tsv')
for row in reader: print(row)

Load the entire file into a pandas data frame
df = airr.load_rearrangement('input.tsv')

Writing AIRR formatted files

Similar to the read operations, write functions are provided for either creating
a writer class to perform row-wise output or writing the entire contents of
a pandas data frame to a file. Again, usage is straightforward with the airr
output functions simply performing some type conversion and field ordering
operations:

import airr

Create a writer class for iterative row output
writer = airr.create_rearrangement('output.tsv')
for row in reader: writer.write(row)

Write an entire pandas data frame to a file
airr.dump_rearrangement(df, 'file.tsv')

Validating AIRR data files

The airr package can validate repertoire and rearrangement data files
to insure that they contain all required fields and that the fields types
match the AIRR Schema. This can be done using the airr-tools command
line program or the validate functions in the library can be called:

Validate a rearrangement file
airr-tools validate rearrangement -a input.tsv

Validate a repertoire metadata file
airr-tools validate repertoire -a input.airr.json

Combining Repertoire metadata and Rearrangement files

The airr package does not keep track of which repertoire metadata files
are associated with rearrangement files, so users will need to handle those
associations themselves. However, in the data, the repertoire_id field forms
the link. The typical usage is that a program is going to perform some
computation on the rearrangements, and it needs access to the repertoire metadata
as part of the computation logic. This example code shows the basic framework
for doing that, in this case doing gender specific computation:

import airr

Load the repertoires
data = airr.load_repertoire('input.airr.json')

Put repertoires in dictionary keyed by repertoire_id
rep_dict = { obj['repertoire_id'] : obj for obj in data['Repertoire'] }

Create an iteratable for rearrangement data
reader = airr.read_rearrangement('input.tsv')
for row in reader:
 # get repertoire metadata with this rearrangement
 rep = rep_dict[row['repertoire_id']]

 # check the gender
 if rep['subject']['sex'] == 'male':
 # do male specific computation
 elif rep['subject']['sex'] == 'female':
 # do female specific computation
 else:
 # do other specific computation

API Reference

Rearrangement Interface

	
airr.read_rearrangement(filename, validate=False, debug=False)

	Open an iterator to read an AIRR rearrangements file

	Parameters

	
	file (str) – path to the input file.

	validate (bool) – whether to validate data as it is read, raising a ValidationError
exception in the event of an error.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	iterable reader class.

	Return type

	airr.io.RearrangementReader

	
airr.create_rearrangement(filename, fields=None, debug=False)

	Create an empty AIRR rearrangements file writer

	Parameters

	
	filename (str) – output file path.

	fields (list) – additional non-required fields to add to the output.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	open writer class.

	Return type

	airr.io.RearrangementWriter

	
airr.derive_rearrangement(out_filename, in_filename, fields=None, debug=False)

	Create an empty AIRR rearrangements file with fields derived from an existing file

	Parameters

	
	out_filename (str) – output file path.

	in_filename (str) – existing file to derive fields from.

	fields (list) – additional non-required fields to add to the output.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	open writer class.

	Return type

	airr.io.RearrangementWriter

	
airr.load_rearrangement(filename, validate=False, debug=False)

	Load the contents of an AIRR rearrangements file into a data frame

	Parameters

	
	filename (str) – input file path.

	validate (bool) – whether to validate data as it is read, raising a ValidationError
exception in the event of an error.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	Rearrangement records as rows of a data frame.

	Return type

	pandas.DataFrame

	
airr.dump_rearrangement(dataframe, filename, debug=False)

	Write the contents of a data frame to an AIRR rearrangements file

	Parameters

	
	dataframe (pandas.DataFrame) – data frame of rearrangement data.

	filename (str) – output file path.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	True if the file is written without error.

	Return type

	bool

	
airr.merge_rearrangement(out_filename, in_filenames, drop=False, debug=False)

	Merge one or more AIRR rearrangements files

	Parameters

	
	out_filename (str) – output file path.

	in_filenames (list) – list of input files to merge.

	drop (bool) – drop flag. If True then drop fields that do not exist in all input
files, otherwise combine fields from all input files.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	True if files were successfully merged, otherwise False.

	Return type

	bool

	
airr.validate_rearrangement(filename, debug=False)

	Validates an AIRR rearrangements file

	Parameters

	
	filename (str) – path of the file to validate.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	True if files passed validation, otherwise False.

	Return type

	bool

Repertoire Interface

	
airr.load_repertoire(filename, validate=False, debug=False)

	Load an AIRR repertoire metadata file

	Parameters

	
	filename (str) – path to the input file.

	validate (bool) – whether to validate data as it is read, raising a ValidationError
exception in the event of an error.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	list of Repertoire dictionaries.

	Return type

	list

	
airr.write_repertoire(filename, repertoires, info=None, debug=False)

	Write an AIRR repertoire metadata file

	Parameters

	
	file (str) – path to the output file.

	repertoires (list) – array of repertoire objects.

	info (object) – info object to write. Will write current AIRR Schema info if not specified.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	True if the file is written without error.

	Return type

	bool

	
airr.validate_repertoire(filename, debug=False)

	Validates an AIRR repertoire metadata file

	Parameters

	
	filename (str) – path of the file to validate.

	debug (bool) – debug flag. If True print debugging information to standard error.

	Returns

	True if files passed validation, otherwise False.

	Return type

	bool

	
airr.repertoire_template()

	Return a blank repertoire object from the template. This object has the complete
structure with all of the fields and all values set to None or empty string.

	Returns

	empty repertoire object.

	Return type

	object

Classes

	
class airr.io.RearrangementReader(handle, base=1, validate=False, debug=False)

	Iterator for reading Rearrangement objects in TSV format

	
fields

	field names in the input Rearrangement file.

	Type

	list

	
external_fields

	list of fields in the input file that are not
part of the Rearrangement definition.

	Type

	list

	
__init__(handle, base=1, validate=False, debug=False)

	Initialization

	Parameters

	
	handle (file) – file handle of the open Rearrangement file.

	base (int) – one of 0 or 1 specifying the coordinate schema in the input file.
If 1, then the file is assumed to contain 1-based closed intervals
that will be converted to python style 0-based half-open intervals
for known fields. If 0, then values will be unchanged.

	validate (bool) – perform validation. If True then basic validation will be
performed will reading the data. A ValidationError exception
will be raised if an error is found.

	debug (bool) – debug state. If True prints debug information.

	Returns

	reader object.

	Return type

	airr.io.RearrangementReader

	
__iter__()

	Iterator initializer

	Returns

	airr.io.RearrangementReader

	
__next__()

	Next method

	Returns

	parsed Rearrangement data.

	Return type

	dict

	
close()

	Closes the Rearrangement file

	
next()

	Next method

	
class airr.io.RearrangementWriter(handle, fields=None, base=1, debug=False)

	Writer class for Rearrangement objects in TSV format

	
fields

	field names in the output Rearrangement file.

	Type

	list

	
external_fields

	list of fields in the output file that are not
part of the Rearrangement definition.

	Type

	list

	
__init__(handle, fields=None, base=1, debug=False)

	Initialization

	Parameters

	
	handle (file) – file handle of the open Rearrangements file.

	fields (list) – list of non-required fields to add. May include fields undefined by the schema.

	base (int) – one of 0 or 1 specifying the coordinate schema in the output file.
Data provided to the write is assumed to be in python style 0-based
half-open intervals. If 1, then data will be converted to 1-based
closed intervals for known fields before writing. If 0, then values will be unchanged.

	debug (bool) – debug state. If True prints debug information.

	Returns

	writer object.

	Return type

	airr.io.RearrangementWriter

	
close()

	Closes the Rearrangement file

	
write(row)

	Write a row to the Rearrangement file

	Parameters

	row (dict) – row to write.

	
class airr.schema.Schema(definition)

	AIRR schema definitions

	
properties

	field definitions.

	Type

	collections.OrderedDict

	
info

	schema info.

	Type

	collections.OrderedDict

	
required

	list of mandatory fields.

	Type

	list

	
optional

	list of non-required fields.

	Type

	list

	
false_values

	accepted string values for False.

	Type

	list

	
true_values

	accepted values for True.

	Type

	list

	
from_bool(value, validate=False)

	Converts a boolean to a string

	Parameters

	
	value (bool) – logical value.

	validate (bool) – when True raise a ValidationError for an invalid value.
Otherwise, set invalid values to None.

	Returns

	conversion of True or False or ‘T’ or ‘F’.

	Return type

	str

	Raises

	airr.ValidationError – raised if value is invalid when validate is set True.

	
spec(field)

	Get the properties for a field

	Parameters

	name (str) – field name.

	Returns

	definition for the field.

	Return type

	collections.OrderedDict

	
to_bool(value, validate=False)

	Convert a string to a boolean

	Parameters

	
	value (str) – logical value as a string.

	validate (bool) – when True raise a ValidationError for an invalid value.
Otherwise, set invalid values to None.

	Returns

	conversion of the string to True or False.

	Return type

	bool

	Raises

	airr.ValidationError – raised if value is invalid when validate is set True.

	
to_float(value, validate=False)

	Converts a string to a float

	Parameters

	
	value (str) – float value as a string.

	validate (bool) – when True raise a ValidationError for an invalid value.
Otherwise, set invalid values to None.

	Returns

	conversion of the string to a float.

	Return type

	float

	Raises

	airr.ValidationError – raised if value is invalid when validate is set True.

	
to_int(value, validate=False)

	Converts a string to an integer

	Parameters

	
	value (str) – integer value as a string.

	validate (bool) – when True raise a ValidationError for an invalid value.
Otherwise, set invalid values to None.

	Returns

	conversion of the string to an integer.

	Return type

	int

	Raises

	airr.ValidationError – raised if value is invalid when validate is set True.

	
type(field)

	Get the type for a field

	Parameters

	name (str) – field name.

	Returns

	the type definition for the field

	Return type

	str

	
validate_header(header)

	Validate header against the schema

	Parameters

	header (list) – list of header fields.

	Returns

	True if a ValidationError exception is not raised.

	Return type

	bool

	Raises

	airr.ValidationError – raised if header fails validation.

	
validate_object(obj, missing=True, nonairr=True, context=None)

	Validate Repertoire object data against schema

	Parameters

	
	obj (dict) – dictionary containing a single repertoire object.

	missing (bool) – provides warnings for missing optional fields.

	(bool (nonairr) – provides warning for non-AIRR fields that cannot be validated.

	context (string) – used by recursion to indicate place in object hierarchy

	Returns

	True if a ValidationError exception is not raised.

	Return type

	bool

	Raises

	airr.ValidationError – raised if object fails validation.

	
validate_row(row)

	Validate Rearrangements row data against schema

	Parameters

	row (dict) – dictionary containing a single record.

	Returns

	True if a ValidationError exception is not raised.

	Return type

	bool

	Raises

	airr.ValidationError – raised if row fails validation.

Schema

	
airr.schema.AlignmentSchema Schema object for the Alignment definition

	AIRR schema definitions

	
airr.schema.properties

	field definitions.

	Type

	collections.OrderedDict

	
airr.schema.info

	schema info.

	Type

	collections.OrderedDict

	
airr.schema.required

	list of mandatory fields.

	Type

	list

	
airr.schema.optional

	list of non-required fields.

	Type

	list

	
airr.schema.false_values

	accepted string values for False.

	Type

	list

	
airr.schema.true_values

	accepted values for True.

	Type

	list

	
airr.schema.RearrangementSchema Schema object for the Rearrangement definition

	AIRR schema definitions

	
airr.schema.properties

	field definitions.

	Type

	collections.OrderedDict

	
airr.schema.info

	schema info.

	Type

	collections.OrderedDict

	
airr.schema.required

	list of mandatory fields.

	Type

	list

	
airr.schema.optional

	list of non-required fields.

	Type

	list

	
airr.schema.false_values

	accepted string values for False.

	Type

	list

	
airr.schema.true_values

	accepted values for True.

	Type

	list

	
airr.schema.RepertoireSchema Schema object for the Repertoire definition

	AIRR schema definitions

	
airr.schema.properties

	field definitions.

	Type

	collections.OrderedDict

	
airr.schema.info

	schema info.

	Type

	collections.OrderedDict

	
airr.schema.required

	list of mandatory fields.

	Type

	list

	
airr.schema.optional

	list of non-required fields.

	Type

	list

	
airr.schema.false_values

	accepted string values for False.

	Type

	list

	
airr.schema.true_values

	accepted values for True.

	Type

	list

Commandline Tools

airr-tools

AIRR Community Standards utility commands.

usage: airr-tools [-h] [--version] ...

	
-h, --help

	show this help message and exit

	
--version

	show program’s version number and exit

airr-tools merge

Merge AIRR rearrangement files.

usage: airr-tools merge [--version] [-h] -o OUT_FILE [--drop] -a AIRR_FILES
 [AIRR_FILES ...]

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

	
-o <out_file>

	Output file name.

	
--drop

	If specified, drop fields that do not exist in all input files.
 Otherwise, include all columns in all files and fill missing data
 with empty strings.

	
-a <airr_files>

	A list of AIRR rearrangement files.

airr-tools validate

Validate AIRR files.

usage: airr-tools validate [--version] [-h] ...

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

airr-tools validate rearrangement

Validate AIRR rearrangement files.

usage: airr-tools validate rearrangement [--version] [-h] -a AIRR_FILES
 [AIRR_FILES ...]

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

	
-a <airr_files>

	A list of AIRR rearrangement files.

airr-tools validate repertoire

Validate AIRR repertoire metadata files.

usage: airr-tools validate repertoire [--version] [-h] -a AIRR_FILES
 [AIRR_FILES ...]

	
--version

	show program’s version number and exit

	
-h, --help

	show this help message and exit

	
-a <airr_files>

	A list of AIRR repertoire metadata files.

Python Library Release Notes

Version 1.3.0: May 30, 2020

	Updated schema set to v1.3.

	Added load_repertoire, write_repertoire, and validate_repertoire
to airr.interface to read, write and validate Repertoire metadata,
respectively.

	Added repertoire_template to airr.interface which will return a
complete repertoire object where all fields have null values.

	Added validate_object to airr.schema that will validate a single
repertoire object against the schema.

	Extended the airr-tools commandline program to validate both rearrangement
and repertoire files.

Version 1.2.1: October 5, 2018

	Fixed a bug in the python reference library causing start coordinate values
to be empty in some cases when writing data.

Version 1.2.0: August 17, 2018

	Updated schema set to v1.2.

	Several improvements to the validate_rearrangement function.

	Changed behavior of all airr.interface functions to accept a file path
(string) to a single Rearrangement TSV, instead of requiring a file handle
as input.

	Added base argument to RearrangementReader and RearrangementWriter
to support optional conversion of 1-based closed intervals in the TSV to
python-style 0-based half-open intervals. Defaults to conversion.

	Added the custom exception ValidationError for handling validation checks.

	Added the validate argument to RearrangementReader which will raise
a ValidationError exception when reading files with missing required
fields or invalid values for known field types.

	Added validate argument to all type conversion methods in Schema,
which will now raise a ValidationError exception for value that cannot be
converted when set to True. When set False (default), the previous
behavior of assigning None as the converted value is retained.

	Added validate_header and validate_row methods to Schema and
removed validations methods from RearrangementReader.

	Removed automatic closure of file handle upon reaching the iterator end in
RearrangementReader.

Version 1.1.0: May 1, 2018

Initial release.

AIRR Data Representation Reference Library

airr is an R package for working with data formatted according to
the AIRR Data Representation schemas. It includes the full set of schema
definitions along with simple functions for read, write and validation.

Table of Contents

	Usage Vignette

	Reference Manual

	Release Notes

Download & Installation

To install the latest release from CRAN:

install.packages("airr")

To build from the source code [https://github.com/airr-community/airr-standards],
first install the build dependencies:

install.packages(c("devtools", "roxygen2"))

To install the latest development code via devtools:

library(devtools)
install_github("airr-community/airr-standards/lang/R@master")

Note, using install_github will not build the documentation. To generate the
documentation, clone the repository, and then build as normal using the following
R commands from the package root lang/R:

library(devtools)
install_deps(dependencies=T)
document()
install()

Dependencies

Imports: methods, readr, stats, stringi, yaml

Suggests: knitr, rmarkdown, testthat

Authors

Jason Vander Heiden (aut,
cre)

Susanna Marquez (aut)

Scott Christley (aut)

AIRR Community (cph)

License

CC BY 4.0

Usage Vignette

Introduction

Since the use of High-throughput sequencing (HTS) was first introduced
to analyze immunoglobulin (B-cell receptor, antibody) and T-cell
receptor repertoires (Freeman et al, 2009; Robins et al, 2009; Weinstein
et al, 2009), the increasing number of studies making use of this
technique has produced enormous amounts of data and there exists a
pressing need to develop and adopt common standards, protocols, and
policies for generating and sharing data sets. The Adaptive Immune
Receptor Repertoire (AIRR) Community [http://airr-community.org]
formed in 2015 to address this challenge (Breden et al, 2017) and has
stablished the set of minimal metadata elements (MiAIRR) required for
describing published AIRR datasets (Rubelt et al, 2017) as well as file
formats to represent this data in a machine-readable form. The airr
R package provide read, write and validation of data following the AIRR
Data Representation schemas. This vignette provides a set of simple use
examples.

AIRR Data Representation Standards

The AIRR Community’s recommendations for a minimal set of metadata that
should be used to describe an AIRR-seq data set when published or
deposited in a AIRR-compliant public repository are described in Rubelt
et al, 2017. The primary aim of this effort is to make published AIRR
datasets FAIR (findable, accessible, interoperable, reusable); with
sufficient detail such that a person skilled in the art of AIRR
sequencing and data analysis will be able to reproduce the experiment
and data analyses that were performed.

Following this principles, V(D)J reference alignment annotations are
saved in standard tab-delimited files (TSV) with associated metadata
provided in accompanying YAML formatted files. The column names and
field names in these files have been defined by the AIRR Data
Representation Working Group using a controlled vocabulary of
standardized terms and types to refer to each piece of information.

Reading AIRR formatted files

The airr package contains the function read_rearrangement to
read and validate files containing AIRR Rearrangement records, where a
Rearrangement record describes the collection of optimal annotations on
a single sequence that has undergone V(D)J reference alignment. The
usage is straightforward, as the file format is a typical tabulated
file. The argument that needs attention is base, with possible
values "0" and "1". base denotes the starting index for
positional fields in the input file. Positional fields are those that
contain alignment coordinates and names ending in “_start” and “_end”.
If the input file is using 1-based closed intervals (R style), as
defined by the standard, then positional fields will not be modified
under the default setting of base="1". If the input file is using
0-based coordinates with half-open intervals (python style), then
positional fields may be converted to 1-based closed intervals using the
argument base="0".

library(airr)

example_data <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")
basename(example_data)

[1] "rearrangement-example.tsv.gz"

airr_rearrangement <- read_rearrangement(example_data)
class(airr_rearrangement)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

head(airr_rearrangement)

A tibble: 6 x 33
sequence_id sequence rev_comp productive vj_in_frame stop_codon v_call d_call j_call c_call sequence_alignm… germline_alignm… junction junction_aa v_cigar d_cigar
<chr> <chr> <lgl> <lgl> <lgl> <lgl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 SRR765688.… NNNNNNN… FALSE TRUE TRUE FALSE IGHV2… IGHD5… IGHJ4… IGHG … CAGATCACCTTGAAG… TGTGCAC… CAHSAGWLPD… 20S56N… 274S5N…
2 SRR765688.… NNNNNNN… FALSE TRUE TRUE FALSE IGHV5… IGHD3… IGHJ6… IGHG … GAGGTGCAGCTGGTG… TGTGCGA… CARHGLYGCD… 20S40N… 305S29…
3 SRR765688.… NNNNNNN… FALSE TRUE TRUE FALSE IGHV7… IGHD3… IGHJ4… IGHG … CAGGTGCAGCTGGTG… TGTGCGA… CAREERRSSG… 20S33N… 293S13…
4 SRR765688.… NNNNNNN… FALSE TRUE TRUE FALSE IGHV7… IGHD3… IGHJ6… IGHG … CAGGTGCAGCTGGTG… TGTGCGA… CAREGYYFDT… 20S33N… 290S9N…
5 SRR765688.… NNNNNNN… FALSE TRUE TRUE FALSE IGHV7… IGHD1… IGHJ6… IGHG … CAGGTGCAGCTGGTG… TGTGCGA… CARDSGGMDVW 20S33N… 283S4N…
6 SRR765688.… NNNNNNN… FALSE FALSE TRUE TRUE IGHV2… IGHD2… IGHJ4… IGHA … CAGATCACCTTGAAG… TGTGTCC… CVLSRRLGDS… 20S56N… 273S12…
… with 17 more variables: j_cigar <chr>, v_sequence_start <int>, v_sequence_end <int>, v_germline_start <int>, v_germline_end <int>, d_sequence_start <int>,
d_sequence_end <int>, d_germline_start <int>, d_germline_end <int>, j_sequence_start <int>, j_sequence_end <int>, j_germline_start <int>, j_germline_end <int>,
junction_length <int>, np1_length <int>, np2_length <int>, duplicate_count <int>

Writing AIRR formatted files

The airr package contains the function write_rearrangement to
write Rearrangement records to the AIRR TSV format.

out_file <- file.path(tempdir(), "airr_out.tsv")
write_rearrangement(airr_rearrangement, out_file)

References

	Breden, F., E. T. Luning Prak, B. Peters, F. Rubelt, C. A. Schramm,
C. E. Busse, J. A. Vander Heiden, et al. 2017. Reproducibility and
Reuse of Adaptive Immune Receptor Repertoire Data. Front Immunol 8:
1418.

	Freeman, J. D., R. L. Warren, J. R. Webb, B. H. Nelson, and R. A.
Holt. 2009. Profiling the T-cell receptor beta-chain repertoire by
massively parallel sequencing. Genome Res 19 (10): 1817-24.

	Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J.
Turtle, O. Kahsai, S. R. Riddell, E. H. Warren, and C. S. Carlson.
2009. Comprehensive assessment of T-cell receptor beta-chain
diversity in alphabeta T cells. Blood 114 (19): 4099-4107.

	Rubelt, F., C. E. Busse, S. A. C. Bukhari, J. P. Burckert, E.
Mariotti-Ferrandiz, L. G. Cowell, C. T. Watson, et al. 2017. Adaptive
Immune Receptor Repertoire Community recommendations for sharing
immune-repertoire sequencing data. Nat Immunol 18 (12): 1274-8.

	Weinstein, J. A., N. Jiang, R. A. White, D. S. Fisher, and S. R.
Quake. 2009. High-throughput sequencing of the zebrafish antibody
repertoire. Science 324 (5928): 807-10.

Reference Topics

	read_airr

	write_airr

	validate_airr

	load_schema

	Schema-class

	ExampleData

read_airr

Read an AIRR TSV

Description

read_airr reads a TSV containing AIRR records.

Usage

read_airr(file, base = c("1", "0"), schema = RearrangementSchema, ...)

read_rearrangement(file, base = c("1", "0"), ...)

read_alignment(file, base = c("1", "0"), ...)

Arguments

	file

	input file path.

	base

	starting index for positional fields in the input file. If "1",
then these fields will not be modified. If "0", then fields
ending in "_start" and "_end" are 0-based half-open intervals
(python style) in the input file and will be converted to 1-based
closed-intervals (R style).

	schema

	Schema object defining the output format.

	…

	additional arguments to pass to
read_delim [http://www.rdocumentation.org/packages/readr/topics/read_delim].

Value

A data.frame of the TSV file with appropriate type and position
conversion for fields defined in the specification.

Details

read_rearrangement reads an AIRR TSV containing Rearrangement data.

read_alignment reads an AIRR TSV containing Alignment data.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

See also

See Schema for the AIRR schema object definition.
See write_airr for writing AIRR data.

write_airr

Write an AIRR TSV

Description

write_airr writes a TSV containing AIRR formatted records.

Usage

write_airr(data, file, base = c("1", "0"), schema = RearrangementSchema, ...)

write_rearrangement(data, file, base = c("1", "0"), ...)

write_alignment(data, file, base = c("1", "0"), ...)

Arguments

	data

	data.frame of Rearrangement data.

	file

	output file name.

	base

	starting index for positional fields in the output file. Fields in
the input data are assumed to be 1-based closed-intervals (R
style). If "1", then these fields will not be modified. If
"0", then fields ending in _start and _end will be
converted to 0-based half-open intervals (python style) in the output
file.

	schema

	Schema object defining the output format.

	…

	additional arguments to pass to
write_delim [http://www.rdocumentation.org/packages/readr/topics/write_delim].

Details

write_rearrangement writes a data.frame containing AIRR
Rearrangement data to TSV.

write_alignment writes a data.frame containing AIRR Alignment data
to TSV.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

Write a Rearrangement data file
outfile <- file.path(tempdir(), "output.tsv")
write_rearrangement(df, outfile)

See also

See Schema for the AIRR schema object definition.
See read_airr for reading to AIRR files.

validate_airr

Validate AIRR data

Description

validate_airr validates compliance of the contents of a data.frame
to the AIRR data standards.

Usage

validate_airr(data, schema = RearrangementSchema)

Arguments

	data

	data.frame to validate.

	schema

	Schema object defining the data standard.

Value

Returns TRUE if the input data is compliant and FALSE if
not.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

Validate a data.frame against the Rearrangement schema
validate_airr(df, schema=RearrangementSchema)

[1] TRUE

load_schema

Load a schema definition

Description

load_schema loads an AIRR object definition from the internal
definition set.

Usage

load_schema(definition)

Arguments

	definition

	name of the schema definition.

Value

A Schema object for the definition.

Details

Valid definitions include:

	"Rearrangement"

	"Alignment"

	"Study"

	"Subject"

	"Diagnosis"

	"Sample"

	"CellProcessing"

	"NucleicAcidProcessing"

	"RawSequenceData"

	"SoftwareProcessing"

Examples

Load the Rearrangement definition
schema <- load_schema("Rearrangement")

Load the Alignment definition
schema <- load_schema("Alignment")

See also

See Schema for the return object.

Schema-class

S4 class defining an AIRR standard schema

Description

Schema defines a common data structure for AIRR Data Representation
standards.

Usage

"names"(x)

"["(x, i)

"$"(x, name)

AlignmentSchema

RearrangementSchema

Arguments

	x

	Schema object.

	i

	field name.

	name

	field name.

Format

A Schema object.

An object of class Schema of length 1.

An object of class Schema of length 1.

Details

The following predefined Schema objects are defined:

AlignmentSchema: AIRR Alignment Schema.

RearrangementSchema: AIRR Rearrangement Schema.

Slots

	required

	character vector of required fields.

	optional

	character vector of non-required fields.

	properties

	list of field definitions.

	info

	list schema information.

See also

See load_schema for loading a Schema from the
definition set. See read_airr,
write_airr and validate_airr
schema operators.

ExampleData

Example AIRR data

Description

Example data files compliant with the the AIRR Data Representation
standards.

Format

extdata/rearrangement-example.tsv.gz: Rearrangement TSV file.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

R Library Release Notes

Version 1.3.0: May 26, 2020

	Updated schema set to v1.3.

	Added info slot to Schema object containing general schema
information.

Version 1.2.0: August 17, 2018

	Updated schema set to v1.2.

	Changed defaults to base="1" for read and write functions.

	Updated example TSV file with coordinate changes, addition of
germline_alignment data and simplification of sequence_id
values.

Version 1.1.0: May 1, 2018

Initial release.

ADC API Reference Implementation

The AIRR Community provides a reference implementation for an ADC API
service. The reference implementation can be utilized for any number
of tasks. For example, a data repository might use the source code as
a starting point for their own implementation and can compare the
behaviour of their service against the reference. Another example is a
tool developer, who wishes to use the API, can setup a local data
repository so they can develop and test their tool before sending API
requests across the internet to remote data repositories. While the
reference implementation is functionally complete, it has minimal
security and no optimizations for large data so it should not be used
directly for production systems.

The reference implementation consists of three GitHub repositories:
adc-api [https://github.com/airr-community/adc-api], adc-api-js-mongodb [https://github.com/airr-community/adc-api-js-mongodb], and adc-api-mongodb-repository [https://github.com/airr-community/adc-api-mongodb-repository]. The three
repositories correspond to the top-level service composition
(adc-api), a JavaScript web service that responds to API requests and
queries a MongoDB database (adc-api-js-mongodb), and a MongoDB
database for holding AIRR-seq data
(adc-api-mongodb-repository). Docker and docker-compose are used to
provide a consistent deployment environment and compose the multiple
components together into a single service. Complete documentation for
configuring and deploying the reference implementation is available in
the adc-api repository.

Community Resources

Resources and Tools Supporting AIRR Standards

	 Applications Supporting the Rearrangement Schema

	 AIRR Data Commons Repositories

Useful Websites for the AIRR Community

	The Antibody Society [https://www.antibodysociety.org/]

	The AIRR Community of the Antibody Society [https://www.antibodysociety.org/the-airr-community]

	B-T.CR Forum [https://b-t.cr]

	The AIRR Community GitHub [https://github.com/airr-community]

	The AIRR Standards GitHub Repository [https://github.com/airr-community/airr-standards]

	The AIRR Community Docker Hub [https://hub.docker.com/u/airrc]

Applications Supporting the Rearrangement Schema

The following list of software tools and databases support the TSV format of
v1.2 of the AIRR Rearrangement schema.

	Software

	Version

	Support

	Reference

	AIRR Python Library [https://pypi.org/project/airr]

	1.2

	Input, output and validation

	Vander Heiden et al. Front Immunol, 2018. [https://doi.org/10.3389/fimmu.2018.02206]

	AIRR R Library [https://cran.r-project.org/web/packages/airr]

	1.2

	Input, output and validation

	Vander Heiden et al. Front Immunol, 2018. [https://doi.org/10.3389/fimmu.2018.02206]

	Decombinator [https://github.com/innate2adaptive/Decombinator]

	4.0.1

	Output

	Oakes et al. Front Immunol, 2017. [https://doi.org/10.3389/fimmu.2017.01267]

	IMGT/V-QUEST [http://www.imgt.org/IMGT_vquest/input]

	3.5.16

	Output

	Giudicelli et al. Cold Spring Harb Protoc, 2011. [https://doi.org/10.1101/pdb.prot5633]

	IgBLAST [https://www.ncbi.nlm.nih.gov/igblast]

	1.11

	Output

	Ye et al. Nucleic Acids Res, 2013. [https://doi.org/10.1093/nar/gkt382]

	IGoR [https://github.com/qmarcou/IGoR]

	TBD

	Input and output

	Marcou et al. Nat Commun, 2018. [https://doi.org/10.1038/s41467-018-02832-w]

	Immcantation:Change-O [https://changeo.readthedocs.io]

	0.4.2

	Input, output and conversion

	Gupta & Vander Heiden et al. Bioinformatics, 2015. [https://doi.org/10.1093/bioinformatics/btv359]

	ImmuneDB [http://immunedb.com]

	0.24.0

	Output

	Rosenfeld et al. Front Immunol, 2018. [https://doi.org/10.3389/fimmu.2018.02107]

	iReceptor [http://www.ireceptor.org]

	2

	Input [https://github.com/sfu-ireceptor/dataloading-mongo/tree/turnkey/dataload] and output [http://www.ireceptor.org/node/97]

	Corrie et al. Immunol Rev, 2018. [https://doi.org/10.1111/imr.12666]

	MiXCR [https://milaboratory.com/software/mixcr]

	2.2.1

	Output

	Bolotin et al. Nat Methods, 2015. [https://doi.org/10.1038/nmeth.3364]

	OLGA [https://github.com/zsethna/OLGA]

	TBD

	Input and output

	Sethna et al. Bioinformatics, 2019. [https://doi.org/10.1093/bioinformatics/btz035]

	Partis [https://github.com/psathyrella/partis]

	TBD

	Output

	Ralph & Matsen. PLoS Comput Biol, 2016. [https://doi.org/10.1371/journal.pcbi.1004409]

	SONAR [https://github.com/scharch/SONAR]

	3

	Output

	Schramm et al. Front Immunol, 2016. [https://doi.org/doi:10.3389/fimmu.2016.00372]

	TRIgS [https://github.com/williamdlees/TRIgS]

	2

	Input

	Lees & Shepherd. J Immunol Res, 2015. [https://doi.org/10.1155/2015/323506]

	VDJServer [https://vdjserver.org]

	1.2.0

	Input and output

	Christley et al. Front Immunol, 2018 [https://doi.org/10.3389/fimmu.2018.00976]

	Vidjil-algo [http://www.vidjil.org]

	2018.1

	Output

	Giraud et al. BMC Genomics, 2014. [https://doi.org/10.1186/1471-2164-15-409]

	Vidjil Web Platform [http://www.vidjil.org]

	TBD

	Input and conversion

	Duez et al. PLoS ONE, 2016. [https://doi.org/10.1371/journal.pone.0166126]

AIRR Data Commons Repositories

These data repositories all implement the AIRR Data Commons (ADC) API programmatic access to
query and download AIRR-seq data.

	iReceptor Public Archive

	VDJServer Community Data Portal

Appendix A: Key Terms

The following table provides definitions for terms and acronyms relevant to this documentation.

	Term

	Definition

	ADC

	AIRR Data Commons

	AIRR

	Adaptive Immune Receptor Repertoire

	AIRR-C

	AIRR Community

	API

	Application Programming Interface

	CAIRR

	CEDAR AIRR

	CEDAR

	Center for Expanded Data Annotation and Retrieval

	HTTP

	Hypertext Transfer Protocol

	JSON

	JavaScript Object Notation

	MiAIRR

	Minimal Information about an Adaptive Immune Receptor Repertoire study

	REST

	Representational State Transfer

	TSV

	Tab Separated Values

	URL

	Universal Resource Locator

	YAML

	YAML Ain’t Markup Language

References

	Breden_2017

	Breden F et al. Reproducibility and Reuse of
Adaptive Immune Receptor Repertoire Data. Front Immunol 8:1418 (2017).
DOI: 10.3389/fimmu.2017.01418 [https://doi.org/10.3389/fimmu.2017.01418]

	Christley_2020

	Christley S et al. The ADC API: a web API for the
programmatic query of the AIRR Data Commons. Front in Big Data (2020).
DOI: 10.3389/fdata.2020.00022 [https://doi.org/10.3389/fdata.2020.00022]

	RFC2119

	Key words for use in RFCs to Indicate Requirement Levels
DOI: 10.17487/RFC2119 [https://doi.org/10.17487/RFC2119]

	Rubelt_2017

	Rubelt F et al. AIRR Community Recommendations for
Sharing Immune Repertoire Sequencing Data. Nat Immunol 18:1274
(2017). DOI: 10.1038/ni.3873 [https://doi.org/10.1038/ni.3873]

	VanderHeiden_2018

	Vander Heiden JA et al. AIRR Community
Standardized Representations for Annotated Immune Repertoires.
Front Immunol 9:2206 (2018). DOI: 10.3389/fimmu.2018.02206 [https://doi.org/10.3389/fimmu.2018.02206]

	Wilkinson_2016

	Wilkinson MD et al. The FAIR Guiding Principles
for scientific data management and stewardship. Sci Data 3:160018
(2016). DOI: 10.1038/sdata.2016.18 [https://doi.org/10.1038/sdata.2016.18]

	Zenodo_1185414

	Release archive of the AIRR Standards repository.
(2015-2020). DOI: 10.5281/zenodo.1185414 [https://doi.org/10.5281/zenodo.1185414]

Index

 Symbols
 | _
 | A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	
 	
 --drop

 	airr-tools-merge command line option

 	
 --version

 	airr-tools command line option

 	airr-tools-merge command line option

 	airr-tools-validate command line option

 	airr-tools-validate-rearrangement command line option

 	airr-tools-validate-repertoire command line option

 	
 -a <airr_files>

 	airr-tools-merge command line option

 	airr-tools-validate-rearrangement command line option

 	airr-tools-validate-repertoire command line option

 	
 	
 -h, --help

 	airr-tools command line option

 	airr-tools-merge command line option

 	airr-tools-validate command line option

 	airr-tools-validate-rearrangement command line option

 	airr-tools-validate-repertoire command line option

 	
 -o <out_file>

 	airr-tools-merge command line option

_

 	
 	__init__() (airr.io.RearrangementReader method)

 	(airr.io.RearrangementWriter method)

 	
 	__iter__() (airr.io.RearrangementReader method)

 	__next__() (airr.io.RearrangementReader method)

A

 	
 	
 airr-tools command line option

 	--version

 	-h, --help

 	
 airr-tools-merge command line option

 	--drop

 	--version

 	-a <airr_files>

 	-h, --help

 	-o <out_file>

 	
 airr-tools-validate command line option

 	--version

 	-h, --help

 	
 	
 airr-tools-validate-rearrangement command line option

 	--version

 	-a <airr_files>

 	-h, --help

 	
 airr-tools-validate-repertoire command line option

 	--version

 	-a <airr_files>

 	-h, --help

 	AlignmentSchema (in module airr.schema)

C

 	
 	close() (airr.io.RearrangementReader method)

 	(airr.io.RearrangementWriter method)

 	
 	create_rearrangement() (in module airr)

D

 	
 	derive_rearrangement() (in module airr)

 	
 	dump_rearrangement() (in module airr)

E

 	
 	external_fields (airr.io.RearrangementReader attribute)

 	(airr.io.RearrangementWriter attribute)

F

 	
 	false_values (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

 	
 	fields (airr.io.RearrangementReader attribute)

 	(airr.io.RearrangementWriter attribute)

 	from_bool() (airr.schema.Schema method)

I

 	
 	info (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

L

 	
 	load_rearrangement() (in module airr)

 	
 	load_repertoire() (in module airr)

M

 	
 	merge_rearrangement() (in module airr)

N

 	
 	next() (airr.io.RearrangementReader method)

O

 	
 	optional (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

P

 	
 	properties (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

R

 	
 	read_rearrangement() (in module airr)

 	RearrangementReader (class in airr.io)

 	RearrangementSchema (in module airr.schema)

 	RearrangementWriter (class in airr.io)

 	
 	repertoire_template() (in module airr)

 	RepertoireSchema (in module airr.schema)

 	required (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

S

 	
 	Schema (class in airr.schema)

 	
 	spec() (airr.schema.Schema method)

T

 	
 	to_bool() (airr.schema.Schema method)

 	to_float() (airr.schema.Schema method)

 	to_int() (airr.schema.Schema method)

 	
 	true_values (airr.schema.Schema attribute)

 	(in module airr.schema), [1], [2]

 	type() (airr.schema.Schema method)

V

 	
 	validate_header() (airr.schema.Schema method)

 	validate_object() (airr.schema.Schema method)

 	
 	validate_rearrangement() (in module airr)

 	validate_repertoire() (in module airr)

 	validate_row() (airr.schema.Schema method)

W

 	
 	write() (airr.io.RearrangementWriter method)

 	
 	write_repertoire() (in module airr)

Format Specification

Overview

Data for Rearrangement or Alignment objects are stored as rows in a
tab-delimited file and should be compatible with any TSV reader.
A dataset is defined in this context as: a TSV file, a TSV with a companion YAML file
containing metadata, or a directory containing multiple TSV files and YAML files.

Encoding

	The file should be encoded as ASCII or UTF-8.

	Everything is case-sensitive.

Dialect

	The record separator is a newline \n and the field separator is a tab \t.

	Fields or data should not be quoted.

	A header line with the AIRR-specified column names is always required.

	Values must not contain tab or newline characters.

	Values should avoid @, #, and quote (" or ') characters,
as the result may be implementation dependent.

	Nested delimiters are not supported by the schema explicitly and should be avoided.
However, if multiple values must be reported in a single column for an application
specific reason, then the use of a comma as the delimiter is recommended.

File names

AIRR formatted TSV files should end with .tsv.

File Structure

The data file has two sections in this order:

	Header. A single line with column names.

	Data values. One record per line.

A comment section preceding the header (e.g., # or @ blocks) is not part of the
specification, but such a section is reserved for potential inclusion in a future
release. As such, a comment section should not be included in the file as it may
be incompatible with a future specification.

Header

A single line containing the column names and specifying the field order.
Any field that corresponds to one of the defined fields should use the
specified field name.

Required columns

Some of the fields are defined as required and therefore must always be present
in the header. Note, however, that all columns allow for null values. Therefore,
required columns exist to define a core set of fields that are always present in
the table structure, but do not mandate that a value be reported.

Custom columns

There are no restrictions on inclusion of additional custom columns in the
Rearrangements file, provided such columns do not use the same name as an
existing required or optional field. It is recommended that custom fields
follow the same naming scheme as existing fields. Meaning, snake_case
with narrowing scope when read from left to right. For example,
sequence_id is the “identifier of the query sequence”.

Consider submitting a pull request for a field name reservation to the
airr-standards repository [https://github.com/airr-community/airr-standards]
if the field may be broadly useful.

Ordering

There are no requirements that fields or records be sorted or
ordered in any specific way. However, the field ordering provided by the
schema is a recommended default, with top-to-bottom equating to left-to-right.

Data Values

The possible data types are string, boolean, number (floating point),
integer, and null (empty string).

Boolean values

Boolean values must be encoded as T for true and F for false.

Null values

All fields may contain null values. This includes columns that are described as
required. A null value should be encoded as an empty string.

Coordinate numbering

All alignment sequence coordinates use the same scheme as IMGT and INSDC
(DDBJ, ENA, GenBank), with the exception that partial coordinate information
should not be used in favor of simply assigning the start/end of the alignment.
Meaning, coordinates should be provided as 1-based values with closed intervals,
without the use of > or < annotations that denoted a partial region.

CIGAR specification

Alignments details are specified using the CIGAR format as defined in the
SAM specifications [https://samtools.github.io/hts-specs/SAMv1.pdf], with
some vocabulary restrictions on the use of clipping, skipping, and
padding operators.

The CIGAR string defines the reference sequence as the germline sequence of the
given gene or region; e.g., for v_cigar the reference
is the V gene germline sequence. The query sequence is what was input into the
alignment tool, which must correspond to what is contained in the sequence
field of the Rearrangement data. For the majority of use cases, this will
necessarily exclude alignment spacers from the CIGAR string, such as IMGT
numbering gaps. However, any gaps appearing in the query sequence
should be accounted for in the CIGAR string so that the alignment between
the query and reference is correctly represented.

The valid operator sets and definitions are as follows:

	Operator

	Description

	=

	An identical non-gap character.

	X

	A differing non-gap character.

	M

	A positional match in the alignment. This can be either an identical (=) or differing (x) non-gap character.

	D

	Deletion in the query (gap in the query).

	I

	Insertion in the query (gap in the reference).

	S

	Positions that appear in the query, but not the reference. Used exclusively to denote the start position of the alignment in the query. Should precede any N operators.

	N

	A space in the alignment. Used exclusively to denote the start position of the alignment in the reference. Should follow any S operators.

Note, the use of either the =/X or M syntax is valid, but should be used consistently.
While leading S and N operators are required, tailing S and N operators are optional.

For example, an D gene alignment that starts at position 419 in the query sequence
(leading 418S), that is 16 nucleotides long with no indels (middle 16M),
has an 10 nucleotide 5’ deletion (leading 10N), a 5 nucleotide 3’ deletion (trailing 5N),
and ends 72 nucleotides from the end of the query sequence (trailing 71S) would
have the following D gene CIGAR string (d_cigar) and positional information:

	Field

	Value

	d_cigar

	418S10N16M71S5N

	d_sequence_start

	419

	d_sequence_end

	434

	d_germline_start

	11

	d_germline_end

	26

Germline Schema (Experimental)

A Germline is a collection of GeneDescriptions for germline IG
or TR genes that are used for V(D)J assignment and other analyses.

File Format Specification

Germline files are YAML/JSON with a structure defined below. Files should be
encoded as UTF-8. Identifiers are case-sensitive. Files should have the
extension .yaml, .yml, or .json.

Fields

Dependencies

Imports: methods, readr, stats, stringi, yaml

Suggests: knitr, rmarkdown, testthat

Authors

Jason Vander Heiden (aut,
cre)

Susanna Marquez (aut)

Scott Christley (aut)

AIRR Community (cph)

License

CC BY 4.0

 _images/CAIRR_submit_3.png
Submit to Repository

Step 1. Select repository

Click the button below to select
the data files that will be submitted
to the repository. Note that the
selected files must match the file
names and file types entered in the
SRA section of the metadata

No data files selected

Step 2. Upload files

MIAIRR metadata json

PAUSE

RESUME

SuBl

_images/CAIRR_submit_4.png
Submit to Repository

Step 1. Select repository

Click the button below to select
the data files that will be submitted
to the repository. Note that the
selected files must match the file
names and file types entered in the
SRA section of the metadata

SELECT FILES

24 data files selected

Step 2. Upload files

MIAIRR metadata json
KCO_Seq 2 001 ATCACG.
KCO_Seq 2 001 ATCACG.
KCO_Seq 2 002 CGATGT.
KCO_Seq 2 002 CGATGT.
KCO_Seq 2 003 TTAGGC.
KCO_Seq 2 003 TTAGGC.
KCO_Seq 2 004 TGACCA
KCO_Seq 2 004 TGACCA

Loo1
Loo1
Loo1
Loo1
Loo1
Loo1
Lot
Lot

SUBMIT

_images/CAIRR_submit_1.png
é CEDAR

All/ Users / Demo User i
Workspace = =
Shared with Field search demo Biosample
Me
Shared with 'S a °
Everyeedy MIAIRR metadata a... || PRECLINICALTRIAL...
Open

FILTER

RESET ALL L 3) L

~ | NCBIBioSample - H BIoCADDIE metadata

00

VERSION ¢

fing 1-90f9

Submit.

Delete

_images/CAIRR_submit_2.png
Submit to Repository

Step 1. Select repository Step 2. Upload files
NCBI (Human Tissue) - NCBI's BioProject, BioSample
and SRA following the BioSample Human package v1.0

@ NCBI MIAIRR - NCBI's BioProject, BioSample and SRA
following the MIARR standard

_images/MiAIRR_data_elements_plain.png
O o O @ O O

1. 2. 3. 4. 5. 6.

Study, Subject Sample Sample Raw Sequences Data Processed

and Diagnosis Collection Processing and Processing Sequences with
Sequencing Annotations

o Study

o Study title

o Study type

o Study inclusion/exclusion
criteria

o Grant funding agency

© Lab name

© Lab address

© Contact information
(data collection)

© Contact information
(data deposition)

o Relevant publications

© Subject ID

o Synthetic library

© Organism

o Sex

©Age

© Age event

© Ancestry population

o Ethnicity

o Race

© Strain name

o Relation to other subjects

© Relation type

© Study group description

© Diagnosis

o Length of disease

o Disease stage

o Prior therapies for primary
disease under study

© Immunogen/agent

o Intervention definition

© Other relevant medical
history

o Biological sample ID
o Sample type

o Tissue

© Anatomic site

o Disease state of sample
o Sample collection time

o Collection time event (T0)
o Biomaterial provider

o Tissue processing

o Cell subset

o Cell subset phenotype

o Single-cell sort

© Number of cells in experiment

o Number of cells per
sequencing reaction

o Cell storage

o Cell quality

o Cell isolation/enrichment
procedures

o Processing protocol

o Target substrate

o Target substrate quality

o Library generation method

o Library generation protocol

o Target locus for PCR

o Forward PCR primer target
location

o Reverse PCR primer target
location

o Complete sequences

o Physical linkage of different
loci

o Template amount

o Total reads passing QC filter

o Protocol IDs

o Sequencing platform

o Read lengths

o Sequencing facility

© Batch number

o Date of sequencing run

o Sequencing kit

o Raw sequence data

O

© Software tools and
version numbers

o Paired read assembly

© Quality thresholds

o Primer match cutoffs

© Collapsing method

© Data processing protocols

o V(D)J germline reference
database

o Cell index

oV gene

o D gene

o Jgene

o Cregion
o IMGT-JUNCTION nucleotide

sequence

© IMGT-JUNCTION amino
acid sequence

o Read count

_images/api_analysis_plot.png
Relative Counts

CDR3 AA Length Histogram

0.20 A

0.15 A

0.10 A

0.05 A

I Naive CD4+ T cell
I Naive CD8+ T cell
I Memory CD4+ T cell
I Memory CD8+ T cell

0.00

10 11 12 13 14 15

16 17 18 19

_images/CAIRR_workspace.png
* CEDAR

P —

Al / Users / Demo User

Workspace » »
Shared with Field search demo BioSample
Me
Shared with 'S 'S
Everybody MIAIRR metadata \EDAHVNCBI Huma... | | PRECLINICALTRIAL...
FILTER
RESET ALL L B L

- NCBI BioSample - H... | | Copy of NCBI BioSa...

BioCADDIE metadata

00

VERSION ¢

Displaying 1-9 0f 9

_images/MiAIRR_data_elements_NCBI_targets.png
O o O @ O O

1. 2. 3. 4. 5. 6.

Study, Subject Sample Sample Raw Sequences Data Processed

and Diagnosis Collection Processing and Processing Sequences with
Sequencing Annotations

o Study

o Study title

o Study type

o Study inclusion/exclusion
criteria

o Grant funding agency

© Lab name

© Lab address

© Contact information
(data collection)

© Contact information
(data deposition)

o Relevant publications

BioProject

© Subject ID

o Synthetic library

© Organism

o Sex

©Age

© Age event

© Ancestry population

o Ethnicity

o Race

© Strain name

© Relation to other subjects

© Relation type

o Study group description

© Diagnosis

o Length of disease

o Disease stage

o Prior therapies for primary
disease under study

© Immunogen/agent

© Intervention definition

© Other relevant medical
history

o Biological sample ID
o sample type

o Tissue

© Anatomic site

o Disease state of sample
o Sample collection time

o Collection time event (T0)
o Biomaterial provider

o Tissue processing

o Cell subset

o Cell subset phenotype
o Single-cell sort

o Number of cells in experiment :

o Number of cells per
sequencing reaction

o Cell storage

o Cell quality

o Cell isolation/enrichment
procedures

o Processing protocol

o Target substrate

o Target substrate quality

o Library generation method

o Library generation protocol

o Target locus for PCR

o Forward PCR primer target
location

o Reverse PCR primer target
location

o Complete sequences

o Physical linkage of different
loci

© Template amount

o Total reads passing QC filter

© Protocol IDs

o Sequencing platform

o Read lengths

o Sequencing facility

o Batch number

o Date of sequencing run

o Sequencing kit

o Raw sequence data

~ SRA

©)

© Software tools and
version numbers

o Paired read assembly

© Quality thresholds

© Primer match cutoffs

o Collapsing method

© Data processing protocols

External DOI

o V(D)J germline reference
database

o Cell index

oV gene

o D gene

o Jgene

o Cregion
o IMGT-JUNCTION nucleotide

sequence

© IMGT-JUNCTION amino
acid sequence

o Read count

_images/bioproject.png
() - National Library of Medicine NCBI National Center for Biotechnology Information ahmadchan@gmail.com

MY SUBMISSIONS.

Sequence Read Archive (SRA) submission: SUB2154468
test project, Dec 05 '16

-} 2 GENERALINFO 3 PROJECT INFO 4 PUBLICATIONS 5 BIOSAMPLE TYPE § BIOSAMPLE ATTRIBUTES 7 SRA METADATA 8 FILES O OVERVIEW

Submitter © Required fields are r

* First (given) name Middle name * Last (family) name

* E-mail (primary) E-mail (secondary)
@ At least one e-mail should be from the organization's domain.

Select group for this submission
© None (affiliation from my personal profile)
© Center for Expanded Data Annotation and Retrieval

* Submitting organization Submitting organization URL * Department
Phone & Fax o
* Street * City * State/Province * Postal code * Country
New [United States of America DI

[Continie] update my contact information in profile

_images/datarep_cmd_flowchart.png
FASTA

\/l/_\

IgBLAST
-—-outfmt 19

A 4
AIRR Rearrangement TSV

FASTA

\/l/_\

IMGT/HighV-QUEST

v

changeo:MakeDb-imgt

--format airr

v

AIRR Rearrangement TSV

—T1

\ 4
(Analysis Tasks)

L 4

changeo:ConvertDb genbank

--format airr

v

MIAIRR TLS Submission Files

_images/datarep_cmd_vusage.png
Fraction of repertoire

0s-

04-

02-

00-

Gk

Iatv2

1aHvs

nav.xhtml

 Table of Contents

 		
 AIRR Community

 		
 Getting Started

 		
 MiAIRR standard for study data submission

 		
 AIRR Data Commons for query and download of AIRR-seq data

 		
 Resources related to data representations and software development

 		
 Software tools and libraries

 		
 Tutorials, examples and workflows

 		
 AIRR Rearrangement TSV Interoperability Example

 		
 ADC API Query and Analysis Example

 		
 Scientific Query Scenarios for AIRR Data Commons API

 		
 Release Notes

 		
 Schema Release Notes

 		
 Version 1.3.0: May 28, 2020

 		
 Version 1.2.1: Oct 5, 2018

 		
 Version 1.2.0: Aug 18, 2018

 		
 Version 1.1.0: May 3, 2018

 		
 Version 1.0.1: Jan 9, 2018

 		
 Python Library Release Notes

 		
 Version 1.3.0: May 30, 2020

 		
 Version 1.2.1: October 5, 2018

 		
 Version 1.2.0: August 17, 2018

 		
 Version 1.1.0: May 1, 2018

 		
 R Library Release Notes

 		
 Version 1.3.0: May 26, 2020

 		
 Version 1.2.0: August 17, 2018

 		
 Version 1.1.0: May 1, 2018

 		
 AIRR Standards

 		
 Study Reporting (MiAIRR)

 		
 Summary

 		
 Topics

 		
 Data Model

 		
 FAIR Principles

 		
 AIRR Data Model

 		
 Schema Definitions

 		
 V(D)J Sequence Representation

 		
 File Format Specification

 		
 Data Values

 		
 Definition Clarifications

 		
 Fields

 		
 Metadata Representation

 		
 Multiple Data Processing on a Repertoire

 		
 Linking Data

 		
 Duality between Repertoires and Rearrangements

 		
 File Format Specification

 		
 Repertoire Fields

 		
 Study Fields

 		
 Subject Fields

 		
 Diagnosis Fields

 		
 Sample Fields

 		
 Tissue and Cell Processing Fields

 		
 Nucleic Acid Processing Fields

 		
 PCR Target Locus Fields

 		
 Raw Sequence Data Fields

 		
 Sequencing Run Fields

 		
 Data Processing Fields

 		
 Software Guidelines

 		
 Compliance Checklist for AIRR Software Tools

 		
 List of Compliant Tools

 		
 Recommended Software Evaluation Data Sets

 		
 Introduction

 		
 Requirements

 		
 Recommendations

 		
 Explanatory Notes

 		
 Ratification

 		
 Data Commons API

 		
 Overview

 		
 Search and Retrieval

 		
 ADC API Limits and Thresholds

 		
 Reference Implementation

 		
 Ontologies and Vocabularies

 		
 Summary

 		
 Sprint Reports

 		
 Approved Ontologies

 		
 Schema Release Notes

 		
 Version 1.3.0: May 28, 2020

 		
 Version 1.2.1: Oct 5, 2018

 		
 Version 1.2.0: Aug 18, 2018

 		
 Version 1.1.0: May 3, 2018

 		
 Version 1.0.1: Jan 9, 2018

 		
 Data Submission and Query

 		
 Data Submission Guides for AIRR-seq studies

 		
 MiAIRR to NCBI submission guide

 		
 CEDAR's CAIRR submission pipeline

 		
 VDJServer Community Data Portal

 		
 iReceptor Turnkey Repository

 		
 Data Submission for Inferred Genes and Alleles

 		
 OGRDB

 		
 Data Query and Download from the AIRR Data Commons

 		
 AIRR Data Commons

 		
 Other Public AIRR-Seq Repositories

 		
 Germline Gene Inference and Usage

 		
 Software

 		
 Python Library

 		
 API Reference

 		
 Commandline Tools

 		
 Release Notes

 		
 Installation

 		
 Quick Start

 		
 R Library

 		
 Usage Vignette

 		
 Reference Manual

 		
 Release Notes

 		
 Download & Installation

 		
 Dependencies

 		
 Authors

 		
 License

 		
 ADC API Reference Implementation

 		
 Community

 		
 Resources and Tools Supporting AIRR Standards

 		
 Applications Supporting the Rearrangement Schema

 		
 AIRR Data Commons Repositories

 		
 Useful Websites for the AIRR Community

 		
 Glossary

 		
 References

_static/AIRR_logo-only.png

_static/ajax-loader.gif

_images/fillproject.png
Project Info
* Project title

* Public description

Relevance & Fill project info

* Is your project part of a larger initiative which is already registered with NCBI?
® No © Yes (not very common)
External Links

Link description URL Delete

‘© Add another link

Select your grants

® Use this tool to look up grants from many subscribed governmental funding agencies (eg
NIH, CDC, FDA and VA) and some non-governmental funding sources (eg HHMI and Autism
Speaks). You can search by grant number, title or grantee name.

© Add grants
Consortium name Consortium URL
Data provider Data provider URL Delete

_images/sradisplay.png
MY SUBMISSIONS

Sequence Read Archive (SRA) submission: SUB2154468 Delete submis:
test project, Dec 05 '16

1 susmirren }- 3PROJCTINFO 4 PUBLICATIONS 5 BIOSAMPLE TYPE 6 BIOSAPLE ATTRISUTES 7 SRA METADATA 8 FiLEs 9 oveview

General Information © Required fields are marked with aster

Do /ant to create new BioProject?
®Yes ONo

Do ant to create new BioSamples for this submission?
®Yes O No

Release date

* When should this submission be released to the public:
® Release immediately following processing (recommended)
Release on specified date or upon publication, whichever is first
Note: Release of BioProject or BioSample is also triggered by the release of linked data.

[continue|

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/CAIRR_messages.png
* CEDAR

P —

Al / Users / Demo User

Workspace = =
Shared with Field search demo Biosample
Me
Shared with 'S ° °
Everyeedy MIAIRR metadata GEDAR-NCBI Huma... | | PRECLINICALTRIAL...
FILTER
RESET ALL L B L

- NCBI BioSample - H... | | Gopy of NCBI BioSa... | | BIoGADDIE metadata

00

VERSION ¢

Displaying 1-9 0f 9

_images/CAIRR_metadata_1.png
€ & MARR o

MiAIRR

Submissions Release Date

BioProject for AIRR NCBI
Study ID*

Study Title*

Study Type*

Study Criteria

Funding Agency*

Contact Information (data collection)*

_images/CAIRR_login.png
Password

) Remember me
Forgot Password?

New user? Register

Watch the video tutorial

Y Y s

_images/CAIRR_metadata_2.png
€ & MIAIRR metadata

Batch Number*
APB26
Date of Sequencing Run*
5/3/2016
Sequencing Kit*
New England Biolabs
File Type
sra-run-fastq
filename

filename1=KCO_Seq1_001_ATCACG_L001_R1_001_convert-
pass_nophix fastq,
filename2=KCO_Seq1_001_ATCACG_L001_R2_001_convert-
pass_nophix.fastq

CANCEL VALIDATE

