
airr-standards Documentation
Release 0.1.0

AIRR Community

Oct 10, 2019

Table of Contents

1 MiAIRR Standard 3
1.1 Introduction to MiAIRR . 3

1.1.1 Summary . 3
1.1.2 Implementations . 3
1.1.3 References . 3

1.2 MiAIRR-to-NCBI Implementation . 3
1.2.1 Guide for submission of AIRR-seq data to NCBI . 3
1.2.2 MiAIRR-to-NCBI Submission Manual . 4
1.2.3 MiAIRR-to-NCBI Specification . 8
1.2.4 Introduction . 15
1.2.5 References . 15

2 CAIRR Pipeline 17

3 AIRR Data Representations 21
3.1 Field Definitions . 21

3.1.1 Rearrangement Schema . 21
3.1.2 Alignment Schema (Experimental) . 24

3.2 Format Specification . 25
3.2.1 Structure . 26
3.2.2 Data Values . 26

4 Software Tools Standard 29
4.1 AIRR Software WG - Guidance for AIRR Software Tools . 29

4.1.1 Introduction . 29
4.1.2 Requirements . 29
4.1.3 Recommendations . 30
4.1.4 Explanatory Notes . 30
4.1.5 Ratification . 31

4.2 AIRR Software WG - Compliance Checklist for AIRR Software Tools 32
4.3 Evaluation Data Sets . 32

5 AIRR Python Reference Library 33
5.1 API Reference . 34

5.1.1 Inferface . 34
5.1.2 Classes . 35
5.1.3 Schema . 39

i

5.2 Commandline Tools . 40
5.2.1 airr-tools . 40

5.3 Release Notes . 41
5.3.1 Version 1.2.1: October 5, 2018 . 41
5.3.2 Version 1.2.0: August 17, 2018 . 41
5.3.3 Version 1.1.0: May 1, 2018 . 41

6 AIRR R Reference Library 43
6.1 About . 43

6.1.1 AIRR Data Representation Reference Library . 43
6.1.2 Dependencies . 44
6.1.3 Authors . 44

6.2 Usage Vignette . 44
6.2.1 Introduction . 44
6.2.2 Reading AIRR formatted files . 44
6.2.3 Writing AIRR formatted files . 45
6.2.4 References . 45

6.3 Reference Topics . 46
6.3.1 read_airr . 46
6.3.2 write_airr . 47
6.3.3 validate_airr . 48
6.3.4 load_schema . 49
6.3.5 Schema-class . 50
6.3.6 ExampleData . 51

6.4 Release Notes . 51
6.4.1 Version 1.2.0: August 17, 2018 . 51
6.4.2 Version 1.1.0: May 1, 2018 . 51

7 Applications Supporting AIRR Standards 53
7.1 Rearrangement Schema . 53

8 Examples & Workflows 55
8.1 AIRR Rearrangement TSV Interoperability Example . 55

8.1.1 Data . 55
8.1.2 Walkthrough . 55

Bibliography 59

Index 61

ii

airr-standards Documentation, Release 0.1.0

The AIRR Community is developing a set of standards for describing, reporting, storing, and sharing adaptive immune
receptor repertoire (AIRR) data, such as sequences of antibodies and T cell receptors (TCRs). Some specific efforts
include:

• The MiAIRR standard for describing minimal information about AIRR datasets, including sample collection
and data processing information.

• Data representations (file format) specifications for storing large amounts of annotated AIRR data.

• APIs for exposing a common interface to repositories/databases containing AIRR data.

• A community standard for software tools which will allow conforming tools to gain community recognition.

Table of Contents 1

airr-standards Documentation, Release 0.1.0

2 Table of Contents

CHAPTER 1

MiAIRR Standard

1.1 Introduction to MiAIRR

1.1.1 Summary

One of the primary initiatives of the Adaptive Immune Receptor Repertoire (AIRR) Community has been to develop
a set of metadata standards for the submission of AIRR sequencing datasets. This work has been carried out by the
AIRR Community Minimal Standards Working Group. In order to support reproducibility, standard quality control,
and data deposition in a common repository, the AIRR Community has agreed to six high-level data sets that will
guide the publication, curation and sharing of AIRR-Seq data and metadata: Study and subject, sample collection,
sample processing and sequencing, raw sequences, processing of sequence data, and processed AIRR sequences. The
detailed data elements within these sets are defined here.

1.1.2 Implementations

• NCBI-based - see this document

• AIRR Common Repositories - in development

1.1.3 References

1.2 MiAIRR-to-NCBI Implementation

Authors Christian E. Busse, Florian Rubelt and Syed Ahmad Chan Bukhari

1.2.1 Guide for submission of AIRR-seq data to NCBI

This site provides a detailed “how-to” guide for submission of AIRR-seq data to NCBI repositories (BioProject,
BioSample, SRA and GenBank). For other implementations of the MiAIRR standard see here.

3

http://airr-community.org/working_groups/minimal_standards
https://github.com/airr-community/airr-standards/blob/master/AIRR_Minimal_Standard_Data_Elements.tsv
https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 0.1.0

Fig. 1: Schema of MiAIRR data sets and the individual data elements of each set.

One of the primary initiatives of the AIRR (Adaptive Immune Receptor Repertoire) Community has been to develop
a set of metadata standards for the submission of immune receptor repertoire sequencing datasets. This work has been
carried out by the AIRR Community Standards Working Group. In order to support reproducibility, standard quality
control, and data deposition in a common repository, the AIRR Community has agreed to six high-level data sets that
will guide the publication, curation and sharing of AIRR-Seq data and metadata: Study and subject, sample collection,
sample processing and sequencing, raw sequences, processing of sequence data, and processed AIRR sequences. The
detailed data elements within these sets are defined here. The association between these AIRR sets, the associated data
elements, and each of the NCBI repositories is shown below:

Submission of AIRR sequencing data and metadata to NCBI’s public data repositories consists of five sequential steps:

1. Submit study information to NCBI BioProject using the NCBI web interface.

2. Submit sample-level information to the NCBI BioSample repository using the AIRR-BioSample templates.

3. Submit raw sequencing data to NCBI SRA using the AIRR-SRA data templates.

4. Generate a DOI for the protocol describing how raw sequencing data were processed using Zenodo.

5. Submit processed sequencing data with sequence-level annotations to GenBank using AIRR feature tags.

For step-by-step instructions on carrying out theses steps an AIRR study submission, see here.

1.2.2 MiAIRR-to-NCBI Submission Manual

Scope of this document

Provide a user manual describing the submission of AIRR data using the NCBI reference implementation described
in [Rubelt_2017]. This implementation uses NCBI’s BioProject, BioSample, Sequence Read Archive (SRA) and
GenBank repositories and metadata standards to report AIRR data.

4 Chapter 1. MiAIRR Standard

https://github.com/airr-community/airr-standards/blob/master/AIRR_Minimal_Standard_Data_Elements.tsv
https://submit.ncbi.nlm.nih.gov/subs/bioproject/
https://submit.ncbi.nlm.nih.gov/subs/biosample/
https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_BioSample_v1.0.xls
https://submit.ncbi.nlm.nih.gov/subs/sra/
https://github.com/airr-community/airr-standards/raw/master/NCBI_implementation/templates_XLS/AIRR_SRA_v1.0.xls
https://zenodo.org
https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/
http://docs.airr-community.org/en/latest/miairr/overview.html

airr-standards Documentation, Release 0.1.0

Data Submission Manual

To facilitate AIRR data submissions to NCBI repositories, we have developed the NCBI-compliant metadata submis-
sion templates both for single and bulk AIRR data submissions. NCBI provides a web-based interface to create a
BioProject and allows to BioSample, Sequence Read Archive (SRA) and GenBank metadata via tab-delimited files
for single BioProject related data files submission. To support the bulk submission of metadata through the FTP, NCBI
also has established an XML schema. This will promote the standard and provide important feedback for its iterative
improvement. Since we propose to include a combination of raw and processed sequence data, the AIRR standard
will sometimes need to be distributed and linked across multiple repositories (e.g., data in SRA linked to related data
in GenBank). In addition, the data elements that comprise the standard will be mapped to ontologies in BioPortal
through NIH CDE (Common Data Element) terms. These linkages will support more sophisticated validation and
logical inference.

MiAIRR data submission to BioProject, BioSample and SRA

Submissions via the web interface

Submitting AIRR data and associated metadata to the Bioproject, BioSample and SRA repositories via NCBI’s web
interface follows in general the submission procedure described in [NCBI_NBK47528], but uses AIRR-specific tem-
plate for metadata submission:

1. Go to https://submit.ncbi.nlm.nih.gov/subs/sra/ and login with your NCBI account (create an account if neces-
sary).

2. Click on “create new submission”. You will see a form as below. Fill the form with required information and
click on “continue”.

1.2. MiAIRR-to-NCBI Implementation 5

https://submit.ncbi.nlm.nih.gov/subs/sra/

airr-standards Documentation, Release 0.1.0

3. If you are submitting for the first time, check “Yes” on the “new BioProject” or “new BioSample” options to
create a new project or sample, respectively.

4. Fill in the project information. Add as much relevant information you can add in description. It will help later
in searching the particular submission.

6 Chapter 1. MiAIRR Standard

airr-standards Documentation, Release 0.1.0

5. The AIRR BioSample template is not yet listed on the NCBI website. The template sheet
AIRR_BioSample_V1.0.xls can be downloaded from https://github.com/airr-community/airr-standards/
tree/master/NCBI_implementation/templates_XLS. Fill in the required field and save the file as tab-delimited
text file (.TSV format), then upload it.

6. To submit the SRA metadata use the AIRR_SRA_v1.0.xls file. Make sure that the column sample_name
uses sample names that match the record in the BioSample template (if new BioSamples are being submitted)
or a previously entered record. Also this file must be saved as tab-delimited text file for upload.

7. Submit the raw sequence file.

8. Complete the submission.

Submissions via an XML template

In addition to the web interface, NCBI provides an FTP-based solution to submit bulk metadata. The corre-
sponding AIRR XML templates can be found under https://github.com/airr-community/airr-standards/tree/master/
NCBI_implementation/templates_XLS. Otherwise users should refer to the current SRA file upload manual https:
//www.ncbi.nlm.nih.gov/sra/docs/submitfiles/. Users planning to frequently submit AIRR-seq data to SRA using
scripts to generate the XML files MUST ensure that the templates are identical to the current upstream version on
Github.

MiAIRR data submission to GenBank/TLS

Processed sequence data will be submitted to the “Targeted Locus Study” (TLS) section of GenBank. The details
of this submission process are currently still being finalized. Basically the procedure is identical to a conventional
GenBank submission with the exception of additional keywords marking it as TLS submission.

Non-productive records should be removed before the data submission or use an alternative annotation as described in
the specification document.

GenBank provides multiple tools (GUI and command-line) to submit data:

• BankIt, a web-based submission tool with wizards to guide the submission process

1.2. MiAIRR-to-NCBI Implementation 7

https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://github.com/airr-community/airr-standards/tree/master/NCBI_implementation/templates_XLS
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/
https://www.ncbi.nlm.nih.gov/sra/docs/submitfiles/

airr-standards Documentation, Release 0.1.0

• Sequin, NCBI’s stand-alone submission tool with wizards to guide the submission process is available by FTP
for use on for Windows, macOS and Unix platforms.

• Tbl2asn is the recommended tool for the bulk data submission. It is a command-line program that automates the
creation of sequence records files (.sqn) for submission to GenBank, driven by multiple tabular unput data files.
Documentation and download options can be found under https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/.

1.2.3 MiAIRR-to-NCBI Specification

Outline of INSDC reporting procedure

TODO: Outline the reporting procedure for data sets 1-4

In terms of standard compliance it is currently REQUIRED1 to deposit information for MiAIRR data sets 5 and 6
in general-purpose sequence repositories for which an AIRR-accepted specification on information mapping MUST
exist. However, users should note that in the future additional AIRR-sanctioned mechanisms for data deposition
will become available as specified by the AIRR Common Repository Working Group. The mapping of data items in
MiAIRR data sets 5 and 6 differs substantially in size and structure and therefore requires distinct reporting procedures:

• Set 5: This is free text information describing the work flow, tools and parameters of the sequence read process-
ing. It is REQUIRED that this information is deposited as a freely available document, permanently linked via
a DOI. Note that is currently neither a specific format for this document nor a recommended service provider
for obtaining the DOI.

• Set 6: This is specified to contain the consensus sequence and the following information obtained from the initial
analysis: V, D and J segment, C region and IMGT-JUNCTION2 [LIGMDB_V12]. These will be deposited in a
general-purpose INSDC repository, using the record structure described below.

INSDC records were originally designed to hold individual Sanger sequences. Therefore each record will contain a
header with information largely identical between all records in an AIRR sequencing study. Records can be concate-
nated for uploading.

The INSDC feature table (FT) [INSDC_FT] is a sequence annotation standard used within the INSDC records and
assigns information to specified positions on the reported sequence string. In regard to the correct location of the
provided annotation, it should especially be noted that some V(D)J inference tools will return coordinates referring to
the reference instead of the query sequence. As the sequence submitted in a record MUST be identical to the query
sequence, the positions provided by the V(D)J inference tool MUST, if necessary, be translated back onto the query
sequence. In case the start and/or end of a feature cannot be reliably determined or is not present in the reported
sequence3, open intervals CAN be used for reporting. However, open intervals MUST NOT be used to deliberately
obfuscate known positions.

In addition to the required information specified in Table_1, users CAN use all valid FT keys/qualifiers to provide
further annotation for the reported sequences. However, a record MUST still be compliant with this specification, if
such OPTIONAL information would be removed, meaning that it is FORBIDDEN to move REQUIRED information
into OPTIONAL keys/qualifiers. In addition, users MUST NOT use keys/qualifiers that could create ambiguity with
the keys/qualifiers specified here.

1 See the “Glossary” section on how to interpret term written in all-caps.
2 Note that according to IMGT definition this is a superset of the CDR3.
3 This can occur e.g. in paired-end sequencing of head-to-head concatenated transcripts, where the 5’ end of the V segment is present in the

amplicon, but cannot be precisely determined.

8 Chapter 1. MiAIRR Standard

https://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/

airr-standards Documentation, Release 0.1.0

element FT key FT qualifier FT value REQUIRED (if used by original study)
V segment V_segment /gene see [Feature table] yes
D segment D_segment /gene see [Feature table] yes; if IGH, TRB or TRD sequence
J segment J_segment /gene see [Feature table] yes
C region C_region /gene see [Feature table] yes
JUNCTION CDS /function “JUNCTION” yes

Table 1: Summary of the mapping of mandatory AIRR MiniStd data set 6 elements to the INSDC feature table
(FT). Note that the overall record will contain additional information, such as cross-references linking the deposited
sequence reads and metadata.

Element mapping

The broad strategy of element mapping to the various repositories is depicted in Table_2.

MiAIRR data set / subset target repository
1 / study BioProject
1 / subject
1 / diagnosis & treatment
2 / sample BioSample
3 / processing (cells)
3 / processing (nucleic acids)
4 / raw sequences SRA
5 / processing (data) user-defined DOI
6 / Processed sequences & annotations Genbank

Table 2: Summary of the mapping of MiAIRR data sets to the various repositories

Mapping of data sets 1-4 to BioProject/BioSample/SRA

TODO: Include item-by-item mapping [NCBI_NBK47528]

Mapping of data set 5 to a user-defined repository

While several mandatory item have been defined in this data set, there is currently no mapping as the reporting proce-
dure is implemented as a free text document. AIRR RECOMMENDS to use Zenodo for deposition of these documents,
as it is hosted by CERN and supports versioned DOIs (termed “concept” DOI). Users SHOULD use the existing AIRR
tag when submitting documents to increase the visiblity of their study.

Mapping of data set 6 to INSDC

Users should note that while the FT is standardized, the overall sequence record structure diverges between the three
INSDC repositories. The following section refers to items at or above the hierarchy level of the FT using the GenBank
specification [GENBANK_FF], the corresponding designations of ENA [ENA_MANUAL] are provided in parenthe-
sis11.

11 Note that there is currently no submission specification for ENA. This information is provided for reference only and will be moved to a
separate document in the future.

1.2. MiAIRR-to-NCBI Implementation 9

https://zenodo.org
https://zenodo.org/communities/airr

airr-standards Documentation, Release 0.1.0

Record header

The header MUST contain all of the following elements:

• REQUIRED: header structure as specified by the respective INSDC repository [ENA_MANUAL]
[GENBANK_FF] [GENBANK_SR].

• FORBIDDEN: The DEFINITION entry will be autopopulated by information provided in the FT part
(misc_feature, /note).

• REQUIRED: identifier of the associated SRA record (MiAIRR data set 4) as DBLINK (ENA: DR line). Note
that it is not possible to refer to individual raw reads, only the full SRA collections can be linked.

• REQUIRED: in the KEYWORDS field (ENA: KW line):

– the term “TLS”

– the term “Targeted Locus Study”

– the term “AIRR”

– the term “MiAIRR:<x>.<y>” with <x> and <y> indicating the used version and subversion of the MiAIRR
standard.

• REQUIRED: DOI of the associated free-text record containing the information on data processing (MiAIRR
data set 5) as REMARK within a REFERENCE4 (ENA: RX line).

• OPTIONAL: The use of structured comments is currently evalutated for use in future versions of the MiAIRR
standard.

Feature table

The feature table, indicated by FEATURES (ENA: RX line), MUST or SHOULD contain the following keys/qualifiers:

General sequence information

• REQUIRED: key source containing the following qualifiers:

– REQUIRED: qualifier /organism (required by [INSDC_FT]).

– REQUIRED: qualifier /mol_type (required by [INSDC_FT]).

– REQUIRED: qualifier /citation pointing to the reference in the header (REFERENCE, ENA: RN line)
that links to the data set 5 document.

– REQUIRED: qualifier /rearranged5.

– REQUIRED: qualifier /note containing the AIRR_READ_COUNT keyword to indicate the read number
used for the consensus. The criteria for selecting these reads and the procedure used to build the consensus
SHOULD be reported as part of data set 5.

– OPTIONAL: qualifier /note containing the AIRR_INDEX_CELL keyword for single-cell experiments.
The value of the keyword SHOULD only contain alpha-numeric characters and MUST be identical for
sequences derived from the same cell of origin.

4 The current GenBank record specification does not include a separate key for DOIs.
5 Although FT does specify a /germline qualifier for non-rearranged sequences it has not been included in this specification as there is no

obvious use case for it. In addition, non-rearranged transcripts would lack a number of other features that are assumed to be present, first of all the
JUNCTION.

10 Chapter 1. MiAIRR Standard

https://www.ncbi.nlm.nih.gov/genbank/structuredcomment/

airr-standards Documentation, Release 0.1.0

– RECOMMENDED: qualifiers /assembly_gap and /linkage_evidence to annotate non-
overlapping paired-end sequences.

– RECOMMENDED: qualifier /strain, if /organism is “Mus musculus”.

Note that additional qualifiers might be REQUIRED by GenBank to harmonize the GenBank record with the BioSam-
ple referenced by it in the header. A list of known BioSample keyword and GenBank qualifiers that MUST contain
the same information can be found below. Whether (and in which direction) the existence of a keyword/qualifiers trig-
gers a requirement in the corresponding record is currently unknown. Please report any undocumented requirements
surfacing during submission to the MiAIRR team.

BioSample keyword GenBank FT qualifier
cell type /cell_type
isolate /isolate
sex /sex
tissue /tissue_type

Segment and region annotation

The following keys MUST be used for annotation according to their FT definition, if the respective item has been
reported by the original study:

• REQUIRED: key V_region. Note that this key MUST NOT be used to annotate V segment leader sequence67.

• REQUIRED: key misc_feature with coordinates identical to those given in V_region. This key MUST
contain a /note qualifier that contains a string as value, which describes the general type of variable region
described by the record. The string MUST match the regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta)) chain
→˓variable region$/

This string will be used as record heading upon import into Genbank. Note that while this behavior of Genbank
is undocumented, the procedure has been approved by NCBI.

• REQUIRED: key V_segment, both coordinates MUST be within V_region. Note that this key MUST NOT
be used to annotate V segment leader sequence67.

• REQUIRED: key D_segment, both coordinates MUST be within V_region. This key is only REQUIRED
for sequences of applicable loci (IGH, TRB, TRD8).

• REQUIRED: key J_segment, both coordinates MUST be within V_region.

• REQUIRED: key C_region, both coordinates MUST NOT overlap with V_region. If the region can be
unambiguously identified, the respective official gene symbol MUST be reported using the /gene qualifier. If
only the isotype (e.g. IgG) but not the subclass (e.g. IgG1) can be identified, a truncated gene symbol (e.g.
IGHG instead of IGHG1) SHOULD be reported instead9.

Each [VDJ]_segment key MUST or SHOULD contain the following qualifiers:

• REQUIRED: qualifier /gene, containing the designation of the inferred segment, according to the database in
the first /db_xref entry. This qualifier MUST NOT contain any allele information.

6 The FT explicitly states that V_segment does not cover the leader sequence. The definition of V_region is slightly more ambiguous, however
in combination with the V_segment definition, it becomes clear that the leader is also not considered to be a part of V_region. Therefore the leader
sequence should be implicitly annotated as the region between the start of CDS and the start of V_region.

7 Previously the leader was implicitly annotated as the region between CDS start and V_region start. As it was decided to drop the “global” CDS
to make it easier to accommodate for INDELs, this is currently not an option anymore.

8 For simplicity, this document only uses human gene symbols. For non-human species the specification pertains to the respective orthologs.
9 This approach has been approved by NCBI.

1.2. MiAIRR-to-NCBI Implementation 11

airr-standards Documentation, Release 0.1.0

• RECOMMENDED: qualifier /allele, containing the designation of the inferred allele, according to the
database in the first /db_xref entry. Note that while INSDC does not specify any format for this quali-
fier, AIRR compliance REQUIRES that this field only contains the allele string, i.e. without the gene name or
separator characters.

• REQUIRED: qualifier /db_xref, linking to the reference record of the inferred segment in a germline database
[INSDC_XREF]. This qualifier can be present multiple times, however only the first entry is mandatory and
MUST link to the database used for the segment designation given with /gene and (if present) /allele.

Note on referencing IMGT databases: There are two IMGT database available in the controlled vocabulary
[INSDC_XREF]:

– IMGT/GENE-DB: This is the genome database, which requires that a reference sequence has been mapped
to genomic DNA. When using this database as reference, note that you can only refer to the gene symbol
not the allele. In the case of ambiguous allele calls (see below) this means that you MUST NOT annotate
any /allele at all. Nevertheless, this SHOULD be the default database for applications using IMGT as
reference, as the sequence for each gene/allele is unique.

– IMGT/LIGM: This database collects sequences described in INSDC databases (GenBank/ENA/DDBJ).
As it might contain multiple entries representing a given gene/allele, it is NOT RECOMMENDED to use
it unless that inference gene/allele is only present in IMGT/LIGM and not in IMGT/GENE-DB.

• RECOMMENDED: /inference to indicate the tool used for segment inference. The description string
SHOULD use COORDINATES as category and aligment as type [INSDC_FT].

Annotation of sequences producing multiple hits with identical scores is problematic and is ultimately at the discretion
of the depositing researcher. However, the algorithms used for tie-breaking SHOULD be documented in data set 5. In
addition, the following procedures MUST be followed:

• Certain gene, ambiguous allele: If multiple alleles of the same gene match to the sequence, the /allele
qualifier MUST NOT be used. As the REQUIRED /db_xref qualifier will ofter refer to a specific allele, all
equal hits SHOULD be annoted via this qualifier (which can be use multiple times). Also see the note on the
limitations of the IMGT/GENE-DB reference database above.

• Ambiguous gene: Pick one, annotate using the qualifiers as noted for ambiguous allele.

JUNCTION annotation

INSDC does currently not define a key to annotate JUNCTION10. Therefore the following procedure MUST be used:

• REQUIRED: key CDS, indicating the positions of

1. the first bp of the first AA of JUNCTION

2. the last bp of the last AA of JUNCTION as determined by the utilized V(D)J inference tool.

Open coordinates MUST be used for both coordinates to allow for automated creation of the /translated
qualifier providing the peptide sequence. Further note that a non-productive JUNCTION can have a length not
divisible by three. This key contains the following qualifiers:

– REQUIRED: qualifier /codon_start with the assigned value “1”.

– REQUIRED: qualifier /function with the assigned value “JUNCTION”.

– REQUIRED: qualifier /product with an assigned value matching the regular expression

/^(immunoglobulin (heavy|light)|T cell receptor (alpha|beta|gamma|delta))
→˓chain junction region$/

10 NCBI confirmed that once there would be enough datasets using the JUNCTION tag as specified here, a motion for an INSDC-sanctioned key
could be initiated.

12 Chapter 1. MiAIRR Standard

airr-standards Documentation, Release 0.1.0

The variable region referred to in the string MUST be the same as the one given in the misc_feature
key.

– RECOMMENDED: qualifier /inference, indicating the tool used for positional inference. The de-
scription string SHOULD use COORDINATES as category and protein motif as type [INSDC_FT].

– FORBIDDEN: qualifier /translated, which will be automatically added by Genbank.

Note that the complete CDS key will be removed by Genbank if the translation contains stop codons or to
many “N” (exact number unknown). As such a record will lack a central piece of REQUIRED information it is
RECOMMENDED that submitters either

– remove the complete record or

– replace the CDS with a misc_feature key while at the same time removing the /codon_start and
/product qualifiers

upfront, as described in the submission manual. If the submitter chooses the replacement option, it has to be
ensured that the annotated coordinates are actually valid and not affect by the frame- shift.

Record body

The record body starts after ORIGIN (ENA: SQ line) and MUST contain:

• the consensus sequence

References

Footnotes

Appendix

Example record (GenBank format)

LOCUS AB123456 420 bp mRNA linear EST 01-JAN-2015
DEFINITION TLS: Mus musculus immunoglobulin heavy chain variable region,

sequence.
ACCESSION AB123456
VERSION AB123456.7
KEYWORDS TLS; Targeted Locus Study; AIRR; MiAIRR:1.0.
SOURCE Mus musculus

ORGANISM Mus musculus
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires;
Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus.

REFERENCE 1 (bases 1 to 420)
AUTHORS Stibbons,P.
TITLE Section 5 information for experiment FOO1
JOURNAL published (01-JAN-2000) on Zenodo
REMARK DOI:10.1000/0000-12345678

REFERENCE 2 (bases 1 to 420)
AUTHORS Stibbons,P.
TITLE Direct Submission
JOURNAL Submitted (01-JAN-2000) Center for Transcendental Immunology,

Unseen University, Ankh-Morpork, 12345, DISCWORLD
DBLINK BioProject: PRJNA000001

(continues on next page)

1.2. MiAIRR-to-NCBI Implementation 13

airr-standards Documentation, Release 0.1.0

(continued from previous page)

BioSample: SAMN000001
Sequence Read Archive: SRR0000001

FEATURES Location/Qualifiers
source 1..420

/organism="Mus musculus"
/mol_type="mRNA"
/strain="C57BL/6J"
/citation=[1]
/rearranged
/note="AIRR_READ_COUNT:123”

V_region 1..324
misc_feature 1..324

/note="immunoglobulin heavy chain variable region"
V_segment 1..257

/gene="IGHV1-34"
/allele="01"
/db_xref="IMGT/LIGM:AC073565"
/inference="COORDINATES:alignment:IgBLAST:1.6"

D_segment 266..272
/gene="IGHD2-2"
/allele="01"
/db_xref="IMGT/LIGM:AJ851868"
/inference="COORDINATES:alignment:IgBLAST:1.6"

J_segment 291..324
/gene="IGHJ4"
/allele="01"
/db_xref="IMGT/LIGM:V00770"
/inference="COORDINATES:alignment:IgBLAST:1.6"

CDS <258..>290
/codon_start=1
/function="JUNCTION"
/product="immunoglobulin heavy chain junction region"
/inference="COORDINATES:protein motif:IgBLAST:1.6"
/translated="CARAGVYDGYTMDYW"

C_region 325..420
/gene="Ighg2c"

ORIGIN
1 agcctggggc ttcagtgaag atgtcctgca aggcttctgg ctacacattc actgactata
61 acatacactg ggtgaagcag agccatggaa agagccttga gtggattgca tatattaatc

121 ctaacaatgg tggttatggc tataacgaca agttcaggga caaggccaca ttgactgtcg
181 acaggtcatc caacacagcc tacatggggc tccgcagcct gacctctgag gactctgcag
241 tctattactg tgcaagagcg ggagtttacg acggatatac tatggactac tggggtcaag
301 gaacctcagt caccgtctcc tcagccaaaa caacagcccc atcggtctat ccactggccc
361 ctgtgtgtgg aggtacaact ggctcctcgg tgactctagg atgcctggtc aagggcaact

//

Glossary

• MUST / REQUIRED: Indicates that an element or action is necessary to conform to the standard.

• SHOULD / RECOMMENDED: Indicates that an element or action is considered to be best practice by AIRR,
but not necessary to conform to the standard.

• CAN / OPTIONAL: Indicates that it is at the discretion of the user to use an element or perform an action.

• MUST NOT / FORBIDDEN: Indicates that an element or action will be in conflict with the standard.

14 Chapter 1. MiAIRR Standard

airr-standards Documentation, Release 0.1.0

Abbreviations

• AA: amino acid

• bp: base pair

• DOI: digital object identifier

• FT: INSDC Feature Table

• INSDC: International Nucleotide Sequence Database Collaboration

• SRA: sequence read archive

1.2.4 Introduction

The MiAIRR standard

The MiAIRR standard (minimal information about adaptive immune receptor repertoires) is a minimal reporting stan-
dard for experiments using sequencing-based technologies to study adaptive immune receptors (e.g. T cell receptors
or immunoglobulins). It is developed and maintained by the Minimal Standards Working Group of the Adaptive Im-
mune Receptors Repertoire (AIRR) Community [Breden_2017]. The current version (1.0) of the standard has been
recently published [Rubelt_2017] and was passed by the general assembly at the annual AIRR Community meeting in
December 2017. MiAIRR requires researchers to report six sets of information:

1. study, subject, diagnosis & intervention

2. sample collection

3. sample processing and sequencing

4. raw sequencing data

5. data processing

6. processed sequences with a basic analysis results

However, MiAIRR only describes the mandatory data items that have to be reported, but neither provides details
how and where to deposit data nor specifies data types and formats. Therefore this document aims to provide both a
submission manual for users as well as a detailed data specification for developers.

1.2.5 References

1.2. MiAIRR-to-NCBI Implementation 15

http://airr-community.org
http://airr-community.org

airr-standards Documentation, Release 0.1.0

16 Chapter 1. MiAIRR Standard

CHAPTER 2

CAIRR Pipeline

The CAIRR pipeline for submitting standards-compliant B and T cell receptor repertoire sequencing studies to
the NCBI

Quick Summary

Just want to get to it? Here is a 2-minute YouTube video.

1- Go to http://cairr.miairr.org to start a metadata instance. Create an account/log in to CEDAR if you need to.

2- Fill out your metadata.

3- Return to your Workspace and select the metadata you just created.

4- To submit your metadata and associated data files, click on the Submit to Repository button in the toolbar .

5- Choose your computer files to submit, then click “SUBMIT”.

You should see the files load into CEDAR, which will immediately upload them into NCBI. (Note: CEDAR does not
save your data files, only your metadata.) Error messages will be reported initially via CEDAR, and later via the email
you provided.

CREATE AIRR METADATA

Clicking on the following link will open up a metadata form in CEDAR for you to enter your AIRR metadata.

http://cairr.miairr.org

For more details, read on.

Introduction

AIRR sequencing (AIRR-seq) has tremendous potential to understand the dynamics of the immune repertoire in vac-
cinology, infectious disease, autoimmunity, and cancer biology. The adaptation of high-throughput sequencing (HTS)
for AIRR (Adaptive Immune Receptor Repertoire) studies has made possible to characterize the AIRR at unprece-
dented depth and the outcome of such sequencing produces big data. Effective sharing of AIRR-seq big data could

17

http://cairr.miairr.org
http://cairr.miairr.org

airr-standards Documentation, Release 0.1.0

potentially reveal amazing scientific insights. The AIRR Community has proposed MiAIRR (Minimum information
about an Adaptive Immune Receptor Repertoire Sequencing Experiment), a standard for reporting AIRR-seq studies.
The MiAIRR standard has been implemented using the National Center for Biotechnology Information (NCBI) repos-
itories. Submissions of AIRR-seq data to the NCBI repositories typically use a combination of web-based and flat-file
templates and include only a minimal amount of terminology validation. As a result, AIRR-seq studies at the NCBI
are often described using inconsistent terminologies, limiting scientists’ ability to access, find, interoperate, and reuse
the data sets and to understand how the experiments were performed. CEDAR (Center for Expanded Data Annotation
and Retrieval) develops technologies involving the use of data standards and ontologies to improve metadata quality.
In order to improve metadata quality and ease AIRR-seq study submission process, we have developed an AIRR-seq
data submission pipeline named CEDAR-AIRR (CAIRR). CAIRR leverages CEDAR’s technologies to: i) create web-
based templates whose entries are controlled by ontology terms, ii) generate and validate metadata and iii) submit
the ontology-linked metadata and sequence files (FASTQ) to the NCBI BioProject, BioSample, and Sequence Read
Archive (SRA) databases. Thus, CAIRR provides a web-based metadata submission interface that supports compli-
ance with MiAIRR standards. The interface enables ontology-based validation for several data elements, including:
organism, disease, cell type and subtype, and tissue. This pipeline will facilitate the NCBI submission process and
improve the metadata quality of AIRR-seq studies.

Submission Process

You will need a CEDAR system account; you can self-register at https://cedar.metadatacenter.org. You will also need
the identifier of a BioProject already entered in the NCBI BioProject database. (Soon CEDAR will allow you to create
a BioProject, but not quite yet!)

Submission Steps

Create your metadata. Go to http://cairr.miairr.org, and CEDAR should open in your browser. (If you are not already
logged in, you may need to log in before being redirected to the metadata page.) It will look something like this.

If you do not want your metadata to be public immediately in NCBI, fill out the Submissions Release Data field at the
top of the form. Then click on any of the three metadata sections to open them up.

Note that our BioProject metadata you enter can not be submitted to NCBI yet, but soon we will enable that service;
meanwhile we are saving this information in CEDAR.

Click on the SAVE button often; if you navigate away from the page or close the page your unsaved changes will be

18 Chapter 2. CAIRR Pipeline

https://cedar.metadatacenter.org
http://cairr.miairr.org

airr-standards Documentation, Release 0.1.0

lost (after a warning). Use VALIDATE to validate your metadata via NCBI’s validation service. When done, use the
left arrow at the top to navigate back to your Workspace. You should see your latest saved metadata there.

Submit your metadata

From your Workspace in CEDAR, select your metadata instance. You should now be able to click on the activated
Submit to Repository button. You will be prompted to specify your data files to upload. (Their names should match
the names you entered in the SRA section of the form.) Finally, click on the SUBMIT button. When you complete the
submission process, CEDAR will display messages indicating completion results as they are logged by NCBI. (If the
upload icon is gray instead of white, you probably haven’t selected an NCBI-eligible metadata form.)

Cite MiAIRR Pipeline

Bukhari, Syed Ahmad Chan, Martin J. O’Connor, Marcos Martínez-Romero, Attila L. Egyedi, Debra Debra Willrett,
John Graybeal, Mark A. Musen, Florian Rubelt, Kei H. Cheung, and Steven H. Kleinstein. “The CAIRR pipeline
for submitting standards-compliant B and T cell receptor repertoire sequencing studies to the NCBI.” Frontiers in
Immunology 9 (2018): 1877. DOI: 10.3389/fimmu.2018.01877 (now in press)

Tell Us About It

Please let us know how it went! If you are willing, we’d love to have your comments in a short survey, it should just
take 5 minutes or so.

We also welcome entry of issues and requests in our github repository issues, and emails can be sent to cedar-
users@lists.stanford.edu. Both of these resources are publicly visible.

19

https://www.surveymonkey.com/r/your-metadata-experience
https://github.com/metadatacenter/cedar-project/issues
mailto:cedar-users@lists.stanford.edu
mailto:cedar-users@lists.stanford.edu

airr-standards Documentation, Release 0.1.0

20 Chapter 2. CAIRR Pipeline

CHAPTER 3

AIRR Data Representations

3.1 Field Definitions

3.1.1 Rearrangement Schema

See the format overview for details on how to structure this data.

Definition Clarifications

Junction versus CDR3

We work with the IMGT definitions of the junction and CDR3 regions. Specifically, the IMGT JUNCTION includes
the conserved cysteine and tryptophan/phenylalanine residues, while CDR3 excludes those two residues. Therefore,
our junction and junction_aa fields which represent the extracted sequence include the two conserved residues,
while the coordinate fields (cdr3_start and cdr3_end) exclude them.

Productive

The schema does not define a strict definition of a productive rearrangement. However, the IMGT definition is recom-
mended:

1. Coding region has an open reading frame

2. No defect in the start codon, splicing sites or regulatory elements.

3. No internal stop codons.

4. An in-frame junction region.

Locus names

A naming convention for locus names is not strictly enforced, but the IMGT locus names are recommended. For
example, in the case of human data, this would be the set: IGH, IGK, IGL, TRA, TRB, TRD, or TRG.

Gene and allele names

21

airr-standards Documentation, Release 0.1.0

Gene call examples use the IMGT nomenclature, but no specific gene or allele nomenclature is mandated. Species
denotations may or may not be included in the gene name, as appropriate. For example, “Homo sapiens IGHV4-
59*01”, “IGHV4-59*01” and “AB019438” are all valid entries for the same allele.

Alignments

There is no required alignment scheme for the nucleotide and amino acid alignment fields. These fields may, or may
not, include numbering spacers (e.g., IMGT-numbering gaps), variations in case to denote mismatches, deletions,
or other features appropriate to the tool that performed the alignment. The only strict requirement is that the query
(“sequence”) and reference (“germline”) must be properly aligned.

Fields

Download as TSV.

Name Type Priority Description
sequence_id string required Unique query sequence identifier within the file. Most often this will be the input sequence header or a substring thereof, but may also be a custom identifier defined by the tool in cases where query sequences have been combined in some fashion prior to alignment.
sequence string required The query nucleotide sequence. Usually, this is the unmodified input sequence, which may be reverse complemented if necessary. In some cases, this field may contain consensus sequences or other types of collapsed input sequences if these steps are performed prior to alignment.
sequence_aa string optional Amino acid translation of the query nucleotide sequence.
rev_comp boolean required True if the alignment is on the opposite strand (reverse complemented) with respect to the query sequence. If True then all output data, such as alignment coordinates and sequences, are based on the reverse complement of ‘sequence’.
productive boolean required True if the V(D)J sequence is predicted to be productive.
vj_in_frame boolean optional True if the V and J segment alignments are in-frame.
stop_codon boolean optional True if the aligned sequence contains a stop codon.
locus string optional Gene locus (chain type). For example, IGH, IGK, IGL, TRA, TRB, TRD, or TRG.
v_call string required V gene with allele. For example, IGHV4-59*01.
d_call string required D gene with allele. For example, IGHD3-10*01.
j_call string required J gene with allele. For example, IGHJ4*02.
c_call string optional C region gene with allele. For example, IGHM*01.
sequence_alignment string required Aligned portion of query sequence, including any indel corrections or numbering spacers, such as IMGT-gaps. Typically, this will include only the V(D)J region, but that is not a requirement.
sequence_alignment_aa string optional Amino acid translation of the aligned query sequence.
germline_alignment string required Assembled, aligned, fully length inferred germline sequence spanning the same region as the sequence_alignment field (typically the V(D)J region) and including the same set of corrections and spacers (if any).
germline_alignment_aa string optional Amino acid translation of the assembled germline sequence.
junction string required Junction region nucleotide sequence, where the junction is defined as the CDR3 plus the two flanking conserved codons.
junction_aa string required Junction region amino acid sequence.
np1 string optional Nucleotide sequence of the combined N/P region between the V and D segments or V and J segments.
np1_aa string optional Amino acid translation of the np1 field.
np2 string optional Nucleotide sequence of the combined N/P region between the D and J segments.
np2_aa string optional Amino acid translation of the np2 field.
cdr1 string optional Nucleotide sequence of the aligned CDR1 region.
cdr1_aa string optional Amino acid translation of the cdr1 field.
cdr2 string optional Nucleotide sequence of the aligned CDR2 region.
cdr2_aa string optional Amino acid translation of the cdr2 field.
cdr3 string optional Nucleotide sequence of the aligned CDR3 region.
cdr3_aa string optional Amino acid translation of the cdr3 field.
fwr1 string optional Nucleotide sequence of the aligned FWR1 region.
fwr1_aa string optional Amino acid translation of the fwr1 field.
fwr2 string optional Nucleotide sequence of the aligned FWR2 region.
fwr2_aa string optional Amino acid translation of the fwr2 field.
fwr3 string optional Nucleotide sequence of the aligned FWR3 region.
fwr3_aa string optional Amino acid translation of the fwr3 field.
fwr4 string optional Nucleotide sequence of the aligned FWR4 region.
fwr4_aa string optional Amino acid translation of the fwr4 field.

Continued on next page

22 Chapter 3. AIRR Data Representations

airr-standards Documentation, Release 0.1.0

Table 1 – continued from previous page
Name Type Priority Description
v_score number optional Alignment score for the V gene.
v_identity number optional Fractional identity for the V gene alignment.
v_support number optional V gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the V gene assignment as defined by the alignment tool.
v_cigar string required CIGAR string for the V gene alignment.
d_score number optional Alignment score for the D gene alignment.
d_identity number optional Fractional identity for the D gene alignment.
d_support number optional D gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the D gene assignment as defined by the alignment tool.
d_cigar string required CIGAR string for the D gene alignment.
j_score number optional Alignment score for the J gene alignment.
j_identity number optional Fractional identity for the J gene alignment.
j_support number optional J gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the J gene assignment as defined by the alignment tool.
j_cigar string required CIGAR string for the J gene alignment.
c_score number optional Alignment score for the C gene alignment.
c_identity number optional Fractional identity for the C gene alignment.
c_support number optional C gene alignment E-value, p-value, likelihood, probability or other similar measure of support for the C gene assignment as defined by the alignment tool.
c_cigar string optional CIGAR string for the C gene alignment.
v_sequence_start integer optional Start position of the V segment in the query sequence (1-based closed interval).
v_sequence_end integer optional End position of the V segment in the query sequence (1-based closed interval).
v_germline_start integer optional Alignment start position in the V gene reference sequence (1-based closed interval).
v_germline_end integer optional Alignment end position in the V gene reference sequence (1-based closed interval).
v_alignment_start integer optional Start position in the V segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
v_alignment_end integer optional End position in the V segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
d_sequence_start integer optional Start position of the D segment in the query sequence (1-based closed interval).
d_sequence_end integer optional End position of the D segment in the query sequence (1-based closed interval).
d_germline_start integer optional Alignment start position in the D gene reference sequence (1-based closed interval).
d_germline_end integer optional Alignment end position in the D gene reference sequence (1-based closed interval).
d_alignment_start integer optional Start position of the D segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
d_alignment_end integer optional End position of the D segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
j_sequence_start integer optional Start position of the J segment in the query sequence (1-based closed interval).
j_sequence_end integer optional End position of the J segment in the query sequence (1-based closed interval).
j_germline_start integer optional Alignment start position in the J gene reference sequence (1-based closed interval).
j_germline_end integer optional Alignment end position in the J gene reference sequence (1-based closed interval).
j_alignment_start integer optional Start position of the J segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
j_alignment_end integer optional End position of the J segment in both the sequence_alignment and germline_alignment fields (1-based closed interval).
cdr1_start integer optional CDR1 start position in the query sequence (1-based closed interval).
cdr1_end integer optional CDR1 end position in the query sequence (1-based closed interval).
cdr2_start integer optional CDR2 start position in the query sequence (1-based closed interval).
cdr2_end integer optional CDR2 end position in the query sequence (1-based closed interval).
cdr3_start integer optional CDR3 start position in the query sequence (1-based closed interval).
cdr3_end integer optional CDR3 end position in the query sequence (1-based closed interval).
fwr1_start integer optional FWR1 start position in the query sequence (1-based closed interval).
fwr1_end integer optional FWR1 end position in the query sequence (1-based closed interval).
fwr2_start integer optional FWR2 start position in the query sequence (1-based closed interval).
fwr2_end integer optional FWR2 end position in the query sequence (1-based closed interval).
fwr3_start integer optional FWR3 start position in the query sequence (1-based closed interval).
fwr3_end integer optional FWR3 end position in the query sequence (1-based closed interval).
fwr4_start integer optional FWR3 start position in the query sequence (1-based closed interval).
fwr4_end integer optional FWR4 end position in the query sequence (1-based closed interval).
v_sequence_alignment string optional Aligned portion of query sequence assigned to the V segment, including any indel corrections or numbering spacers.

Continued on next page

3.1. Field Definitions 23

airr-standards Documentation, Release 0.1.0

Table 1 – continued from previous page
Name Type Priority Description
v_sequence_alignment_aa string optional Amino acid translation of the v_sequence_alignment field.
d_sequence_alignment string optional Aligned portion of query sequence assigned to the D segment, including any indel corrections or numbering spacers.
d_sequence_alignment_aa string optional Amino acid translation of the d_sequence_alignment field.
j_sequence_alignment string optional Aligned portion of query sequence assigned to the J segment, including any indel corrections or numbering spacers.
j_sequence_alignment_aa string optional Amino acid translation of the j_sequence_alignment field.
c_sequence_alignment string optional Aligned portion of query sequence assigned to the constant region, including any indel corrections or numbering spacers.
c_sequence_alignment_aa string optional Amino acid translation of the c_sequence_alignment field.
v_germline_alignment string optional Aligned V gene germline sequence spanning the same region as the v_sequence_alignment field and including the same set of corrections and spacers (if any).
v_germline_alignment_aa string optional Amino acid translation of the v_germline_alignment field.
d_germline_alignment string optional Aligned D gene germline sequence spanning the same region as the d_sequence_alignment field and including the same set of corrections and spacers (if any).
d_germline_alignment_aa string optional Amino acid translation of the d_germline_alignment field.
j_germline_alignment string optional Aligned J gene germline sequence spanning the same region as the j_sequence_alignment field and including the same set of corrections and spacers (if any).
j_germline_alignment_aa string optional Amino acid translation of the j_germline_alignment field.
c_germline_alignment string optional Aligned constant region germline sequence spanning the same region as the c_sequence_alignment field and including the same set of corrections and spacers (if any).
c_germline_alignment_aa string optional Amino acid translation of the c_germline_aligment field.
junction_length integer optional Number of nucleotides in the junction sequence.
np1_length integer optional Number of nucleotides between the V and D segments or V and J segments.
np2_length integer optional Number of nucleotides between the D and J segments.
n1_length integer optional Number of untemplated nucleotides 5’ of the D segment.
n2_length integer optional Number of untemplated nucleotides 3’ of the D segment.
p3v_length integer optional Number of palindromic nucleotides 3’ of the V segment.
p5d_length integer optional Number of palindromic nucleotides 5’ of the D segment.
p3d_length integer optional Number of palindromic nucleotides 3’ of the D segment.
p5j_length integer optional Number of palindromic nucleotides 5’ of the J segment.
consensus_count integer optional Number of reads contributing to the (UMI) consensus for this sequence. For example, the sum of the number of reads for all UMIs that contribute to the query sequence.
duplicate_count integer optional Copy number or number of duplicate observations for the query sequence. For example, the number of UMIs sharing an identical sequence or the number of identical observations of this sequence absent UMIs.
cell_id string optional Identifier defining the cell of origin for the query sequence.
clone_id string optional Clonal cluster assignment for the query sequence.
rearrangement_id string optional Identifier for the Rearrangement object. May be identical to sequence_id, but will usually be a univerally unique record locator for database applications.
rearrangement_set_id string optional Identifier for grouping Rearrangement objects.
germline_database string optional Source of germline V(D)J genes with version number or date accessed. For example, ‘IMGT/GENE-DB 3.1.18 (15 March 2018)’.

3.1.2 Alignment Schema (Experimental)

See the format overview for details on how to structure this data.

Note, this schema definition is still experimental and should not be considered final.

Fields

Download as TSV.

24 Chapter 3. AIRR Data Representations

airr-standards Documentation, Release 0.1.0

Name Type Pri-
or-
ity

Description

sequence_idstringre-
quired

Unique query sequence identifier within the file. Most often this will be the input se-
quence header or a substring thereof, but may also be a custom identifier defined by
the tool in cases where query sequences have been combined in some fashion prior to
alignment.

segment stringre-
quired

The segment for this alignment. One of V, D, J or C.

rev_comp booleanop-
tional

Alignment result is from the reverse complement of the query sequence.

call stringre-
quired

Gene assignment with allele.

score numberre-
quired

Alignment score.

identity numberop-
tional

Alignment fractional identity.

support numberop-
tional

Alignment E-value, p-value, likelihood, probability or other similar measure of support
for the gene assignment as defined by the alignment tool.

cigar stringre-
quired

Alignment CIGAR string.

sequence_startintegerop-
tional

Start position of the segment in the query sequence (1-based closed interval).

sequence_endintegerop-
tional

End position of the segment in the query sequence (1-based closed interval).

germline_startintegerop-
tional

Alignment start position in the reference sequence (1-based closed interval).

germline_endintegerop-
tional

Alignment end position in the reference sequence (1-based closed interval).

rank integerop-
tional

Alignment rank.

rearrangement_idstringop-
tional

Identifier for the Rearrangement object. May be identical to sequence_id, but will usu-
ally be a univerally unique record locator for database applications.

rearrangement_set_idstringop-
tional

Identifier for grouping Rearrangement objects.

germline_databasestringop-
tional

Source of germline V(D)J genes with version number or date accessed. For example,
‘IMGT/GENE-DB 3.1.18 (15 March 2018)’.

3.2 Format Specification

Data for Rearrangement or Alignment objects are stored as rows in a tab-delimited file and should be compatible
with any TSV reader. A dataset is defined in this context as: a TSV file, a TSV with a companion YAML file containing
metadata, or a directory containing multiple TSV files and YAML files.

Encoding

• The file should be encoded as ASCII or UTF-8.

• Everything is case-sensitive.

Dialect

• The record separator is a newline \n and the field separator is a tab \t.

3.2. Format Specification 25

airr-standards Documentation, Release 0.1.0

• Fields or data should not be quoted.

• A header line with the AIRR-specified column names is always required.

• Values must not contain tab or newline characters.

• Values should avoid @, #, and quote (" or ') characters, as the result may be implementation dependent.

• Nested delimiters are not supported by the schema explicitly and should be avoided. However, if multiple values
must be reported in a single column for an application specific reason, then the use of a comma as the delimiter
is recommended.

File names

AIRR formatted TSV files should end with .tsv.

3.2.1 Structure

The data file has two sections in this order:

1. Header. A single line with column names.

2. Data values. One record per line.

A comment section preceding the header (e.g., # or @ blocks) is not part of the specification, but such a section is
reserved for potential inclusion in a future release. As such, a comment section should not be included in the file as it
may be incompatible with a future specification.

Header

A single line containing the column names and specifying the field order. Any field that corresponds to one of the
defined fields should use the specified field name.

Required columns

Some of the fields are defined as required and therefore must always be present in the header. Note, however,
that all columns allow for null values. Therefore, required columns exist to define a core set of fields that are always
present in the table structure, but do not mandate that a value be reported.

Custom columns

There are no restrictions on inclusion of additional custom columns in the Rearrangements file, provided such columns
do not use the same name as an existing required or optional field. It is recommended that custom fields follow the
same naming scheme as existing fields. Meaning, snake_case with narrowing scope when read from left to right.
For example, sequence_id is the “identifier of the query sequence”.

Consider submitting a pull request for a field name reservation to the airr-standards repository if the field may be
broadly useful.

Ordering

There are no requirements that fields or records be sorted or ordered in any specific way. However, the field ordering
provided by the schema is a recommended default, with top-to-bottom equating to left-to-right.

3.2.2 Data Values

The possible data types are string, boolean, number (floating point), integer, and null (empty string).

Boolean values

Boolean values must be encoded as T for true and F for false.

Null values

26 Chapter 3. AIRR Data Representations

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 0.1.0

All fields may contain null values. This includes columns that are described as required. A null value should be
encoded as an empty string.

Coordinate numbering

All alignment sequence coordinates use the same scheme as IMGT and INSDC (DDBJ, ENA, GenBank), with the
exception that partial coordinate information should not be used in favor of simply assigning the start/end of the
alignment. Meaning, coordinates should be provided as 1-based values with closed intervals, without the use of > or
< annotations that denoted a partial region.

CIGAR specification

Alignments details are specified using the CIGAR format as defined in the SAM specifications, with some vocabulary
restrictions on the use of clipping, skipping and padding operators. The following table defines the valid operator set.

Op-
era-
tor

Description

= An identical non-gap character.
X A differing non-gap character.
M A positional match in the alignment. This can be either an identical (=) or differing (x) non-gap character.
D Deletion in the query (gap in the query).
I Insertion in the query (gap in the reference).
S Positions that appear in the query, but not the reference. Used exclusively to denote the start position of

the alignment in the query. Should precede any N operators.
N A space in the alignment. Used exclusively to denote the start position of the alignment in the reference.

Should follow any S operators.

Note, the use of either the =/X or M syntax is valid, but should be used consistently. While leading S and N operators
are required, tailing S and N operators are optional.

3.2. Format Specification 27

https://samtools.github.io/hts-specs/SAMv1.pdf

airr-standards Documentation, Release 0.1.0

28 Chapter 3. AIRR Data Representations

CHAPTER 4

Software Tools Standard

4.1 AIRR Software WG - Guidance for AIRR Software Tools

Version 1.0

4.1.1 Introduction

The Adaptive Immune Receptor Repertoire (AIRR) Community will benefit greatly from cooperation among groups
developing software tools and resources for AIRR research. The goal of the AIRR Software Working Group is to pro-
mote standards for AIRR software tools and resources in order to enable rigorous and reproducible immune repertoire
research at the largest scale possible. As one contribution to this goal, we have established the following standards for
software tools. Authors whose tools comply with this standard will, subject to ratification from the AIRR Software
WG, be permitted to advertise their tools as being AIRR-compliant.

4.1.2 Requirements

Tools must:

1. Be published in source code form, and hosted on a publicly available repository with a clear versioning system.

2. Support community-curated standard file formats and strive for modularity and interoperability with other tools.
In particular, tools must read and write AIRR Data Representations standards corresponding to their tool.

3. Include example data (in AIRR standard formats where applicable) and checks for expected output from that
data, in order to provide a minimal example of functionality allowing users to check that the software is per-
forming as described.

4. Provide information about run parameters as part of the output.

5. Provide a container build file that can be used to create an image which encapsulates the software tool, its
dependencies, and required run environment. This needs to be remotely and automatically built. We currently
recognize two software solutions, although we will adapt as software evolves:

a. A Dockerfile that automatically builds a container image on Docker Hub.

29

https://www.antibodysociety.org/airrc/
https://www.antibodysociety.org/software-working-group/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/docker-hub/builds/
https://docs.docker.com/docker-hub/

airr-standards Documentation, Release 0.1.0

b. A Singularity recipe file that automatically builds a container image on Singularity Hub.

6. Provide user support, clearly stating which level of support users can expect, and how and from whom to obtain
it.

4.1.3 Recommendations

We suggest software tools be published under a license that permits free access, use, modification, and sharing, such as
GPL, Apache 2.0, or MIT. However, we understand that this depends on institutional intellectual property restrictions,
thus it is a recommendation rather than a requirement.

4.1.4 Explanatory Notes

Open Source Software and Versioned Repositories

Software tools in the AIRR field are evolving rapidly. In the interests of reproducibility and transparency, published
work should be based on tools (and versions of tools) that can be obtained easily by other researchers in the future. To
that end, AIRR compliant tools must be published in open repositories such as GitHub or Bitbucket, and we encourage
publishing users to provide specifics on the version and configuration of tools that have been employed.

Community-Curated File Formats

The AIRR Data Representation Working Group has defined standards for immune receptor repertoire sequencing
datasets. Software tool authors are requested to support these standards as much as possible, for applicable data sets.
The currently implemented standard covers submission of reads to NCBI repositories (BioProject, BioSample, SRA
and Genbank) and annotated immune receptor rearrangements. Tool authors can assist by easing/guiding the process
of submission as much as possible.

Example Data and Checks

Because the installation and operation of the tools in this field may be complex, we require example data and details
of expected output, so that users can confirm that their installation is functioning as expected. Furthermore, metadata
(for example, germline gene libraries) and other software dependencies should be checked when the tool runs, and
informative error messages issued if necessary.

Dependencies and Containers

Containers encapsulate everything needed to run a piece of software into a single convenient executable that is largely
independent of the user’s software environment. For the following purposes, providers of AIRR-compliant tools must
provide a containerized implementation (based on a published build script as described above) as one download option
that users can choose:

• Containers allow users to use and evaluate a tool easily and reproduce results, without the need to resolve
dependencies or configure the environment.

• Having these containers be automatically built also provides a self-validated way to understand the fine details
of installation from a known starting point.

To ensure that containers are up to date, they must be built automatically when the current release version of the tool
is updated. We will use automated builds on Docker Hub and Singularity Hub for this purpose. The corresponding
build files document dependencies clearly, and make it easy for the maintainer to keep the container’s dependencies
up to date in subsequent releases.

30 Chapter 4. Software Tools Standard

https://www.sylabs.io/docs/
https://github.com/singularityhub/singularityhub.github.io/wiki/Automated-Build
https://singularity-hub.org/
https://github.com
https://bitbucket.org

airr-standards Documentation, Release 0.1.0

An example Docker container is provided on the Software WG GitHub repository. This example encapsulates Ig-
BLAST, and implements the bioboxes command-line standard.

Support Statements

Tool authors must provide support for the tool. They must state explicitly what level of support is provided, and
explain how support can be obtained. We recommend a method such as the issues tracker on Github, that publishes
support requests transparently and links resolutions to specific versions or releases. Users are advised to check that the
level of support and the frequency of software updates matches their expectations before committing to a tool.

Analysis Workflows

• At the moment, we do not endorse a specific workflow technology standard:

– Technology is evolving too rapidly for us to commit to a particular workflow.

– Typically, AIRR analysis tools have many options and modes, which would make it difficult to support a
“plug and play” environment without unduly restricting functionality.

• As tools and workflows evolve, we will keep the position under review and may make stronger technology
recommendations in the future.

• We strongly encourage authors of tools to provide concrete, documented, examples of workflows that employ
their tools, together with sample input and output data.

• Likewise we encourage authors of research publications to provide documented workflows that will enable
interested readers to reproduce the results.

4.1.5 Ratification

Authors may submit tools to the AIRR Software WG requesting ratification against the standard. The submitter should
provide a completed copy of the AIRR Software WG - Compliance Checklist for AIRR Software Tools to evidence
reviewable and itemised evidence of compliance with each Requirement listed above.

The Software WG will, where appropriate, issue a Certificate of Compliance, stating the version of the tool reviewed
and the version of the Standard with which compliance was ratified. After receiving a Certificate, authors will be
entitled to claim compliance with the Standard, and may incorporate any artwork provided by AIRR for that purpose.

The Software WG will maintain and publish a list of compliant software.

If a tool does not achieve ratification, the Software WG will provide an explanation. The Software WG encourages
resubmission once issues have been resolved.

Authors must re-submit tools for ratification following major upgrades or substantial modifications. The Software
WG may, at its discretion, request resubmission at any time. If a certified tool subsequently fails ratification, or is not
re-submitted in response to a request from the Software WG, AIRR compliance may no longer be claimed and the
associated artwork may no longer be used.

The Software WG may, at its discretion, issue a new version of this standard at any time. Tools certified against
previous version(s) of the standard may continue to claim compliance with those versions and to use the associated
artwork. Authors wishing to claim compliance with the new version must submit a new request for certification and
may not claim compliance with the new version, or use associated artwork, until and unless certification is obtained.

4.1. AIRR Software WG - Guidance for AIRR Software Tools 31

https://www.ncbi.nlm.nih.gov/igblast/
https://www.ncbi.nlm.nih.gov/igblast/
http://bioboxes.org

airr-standards Documentation, Release 0.1.0

4.2 AIRR Software WG - Compliance Checklist for AIRR Software
Tools

Version 1.0 (when finalised)

This questionnaire should be read in conjunction with the AIRR Software WG - Guidance for AIRR Software Tools.

To submit your tool for ratification against the standard, please send the completed questionnaire to soft-
ware@airrc.antibodysociety.org.

Please provide comments in italics in each response box where these would be helpful to facilitate understanding. We
kindly ask for a brief explanatory comment if your answer to a question is no or not applicable.

Name of Tool:

Contact Name/Institution:

Contact email:

Re-
quire-
ment
Ref.

Question Response

1 Where is the source code published (please provide a link)?
2 Does the tool support AIRR Data Representations standards?

Please list any other standard data formats that are supported
yes/no

3 Does the distribution include example data?
Is the example data in MiAIRR format, where applicable?
Does the tool support or provide checks for expected output from example
data?

yes/no
yes/no/not applicable
yes/no

4 Does the output of the tool include a summary of the run parameters? yes/no
5 Is a container build file provided?

Container technology used?
Is the container automatically built as new versions are released?

yes/no
Docker/Singularity/Other
(please specify)
yes/no

6 Where can users see what level of support is available? (Please provide a
link)

7 Under what software licence is the tool published? (please provide the name
of the licence (e.g. GPL, MIT) or a link

4.3 Evaluation Data Sets

The Software WG is working on the development and evaluation of simulated data sets.

Lists of published real-world datasets are maintained in the AIRR Forum Wiki.

32 Chapter 4. Software Tools Standard

mailto:software@airrc.antibodysociety.org
mailto:software@airrc.antibodysociety.org
https://b-t.cr/c/wiki

CHAPTER 5

AIRR Python Reference Library

Installation

Install in the usual manner from PyPI:

> pip3 install airr --user

Or from the downloaded source code directory:

> python3 setup.py install --user

Reading AIRR formatted files

The airr package contains functions to read and write AIRR data files as either iterables or pandas data frames. The
usage is straightforward, as the file format is a typical tab delimited file, but the package performs some additional
validation and type conversion beyond using a standard CSV reader.

import airr

Create an iteratable that returns a dictionary for each row
reader = airr.read_rearrangement('input.tsv')

Load the entire file into a pandas data frame
df = airr.load_rearrangement('input.tsv')

Writing AIRR formatted files

Similar to the read operations, write functions are provided for either creating a writer class to perform row-wise
output or writing the entire contents of a pandas data frame to a file. Again, usage is straightforward with the airr
output functions simply performing some type conversion and field ordering operations.

import airr

Create a writer class for iterative row output
writer = airr.create_rearrangement('output.tsv')
for row in reader: writer.write(row)

(continues on next page)

33

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 0.1.0

(continued from previous page)

Write an entire pandas data frame to a file
airr.dump_rearrangement(df, 'file.tsv')

5.1 API Reference

5.1.1 Inferface

airr.read_rearrangement(filename, validate=False, debug=False)
Open an iterator to read an AIRR rearrangements file

Parameters

• file (str) – path to the input file.

• validate (bool) – whether to validate data as it is read, raising a ValidationError excep-
tion in the event of an error.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns iterable reader class.

Return type airr.io.RearrangementReader

airr.create_rearrangement(filename, fields=None, debug=False)
Create an empty AIRR rearrangements file writer

Parameters

• filename (str) – output file path.

• fields (list) – additional non-required fields to add to the output.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns open writer class.

Return type airr.io.RearrangementWriter

airr.derive_rearrangement(out_filename, in_filename, fields=None, debug=False)
Create an empty AIRR rearrangements file with fields derived from an existing file

Parameters

• out_filename (str) – output file path.

• in_filename (str) – existing file to derive fields from.

• fields (list) – additional non-required fields to add to the output.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns open writer class.

Return type airr.io.RearrangementWriter

airr.load_rearrangement(filename, validate=False, debug=False)
Load the contents of an AIRR rearrangements file into a data frame

Parameters

• filename (str) – input file path.

34 Chapter 5. AIRR Python Reference Library

airr-standards Documentation, Release 0.1.0

• validate (bool) – whether to validate data as it is read, raising a ValidationError excep-
tion in the event of an error.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns Rearrangement records as rows of a data frame.

Return type pandas.DataFrame

airr.dump_rearrangement(dataframe, filename, debug=False)
Write the contents of a data frame to an AIRR rearrangements file

Parameters

• dataframe (pandas.DataFrame) – data frame of rearrangement data.

• filename (str) – output file path.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if the file is written without error.

Return type bool

airr.merge_rearrangement(out_filename, in_filenames, drop=False, debug=False)
Merge one or more AIRR rearrangements files

Parameters

• out_filename (str) – output file path.

• in_filenames (list) – list of input files to merge.

• drop (bool) – drop flag. If True then drop fields that do not exist in all input files, other-
wise combine fields from all input files.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if files were successfully merged, otherwise False.

Return type bool

airr.validate_rearrangement(filename, debug=False)
Validates one or more AIRR rearrangements files

Parameters

• filename (str) – path of the file to validate.

• debug (bool) – debug flag. If True print debugging information to standard error.

Returns True if files passed validation, otherwise False.

Return type bool

5.1.2 Classes

class airr.io.RearrangementReader(handle, base=1, validate=False, debug=False)
Iterator for reading Rearrangement objects in TSV format

fields
field names in the input Rearrangement file.

Type list

external_fields
list of fields in the input file that are not part of the Rearrangement definition.

5.1. API Reference 35

airr-standards Documentation, Release 0.1.0

Type list

__init__(handle, base=1, validate=False, debug=False)
Initialization

Parameters

• handle (file) – file handle of the open Rearrangement file.

• base (int) – one of 0 or 1 specifying the coordinate schema in the input file. If 1, then
the file is assumed to contain 1-based closed intervals that will be converted to python
style 0-based half-open intervals for known fields. If 0, then values will be unchanged.

• validate (bool) – perform validation. If True then basic validation will be performed
will reading the data. A ValidationError exception will be raised if an error is found.

• debug (bool) – debug state. If True prints debug information.

Returns reader object.

Return type airr.io.RearrangementReader

__iter__()
Iterator initializer

Returns airr.io.RearrangementReader

__next__()
Next method

Returns parsed Rearrangement data.

Return type dict

close()
Closes the Rearrangement file

next()
Next method

class airr.io.RearrangementWriter(handle, fields=None, base=1, debug=False)
Writer class for Rearrangement objects in TSV format

fields
field names in the output Rearrangement file.

Type list

external_fields
list of fields in the output file that are not part of the Rearrangement definition.

Type list

__init__(handle, fields=None, base=1, debug=False)
Initialization

Parameters

• handle (file) – file handle of the open Rearrangements file.

• fields (list) – list of non-required fields to add. May include fields undefined by the
schema.

• base (int) – one of 0 or 1 specifying the coordinate schema in the output file. Data
provided to the write is assumed to be in python style 0-based half-open intervals. If 1,

36 Chapter 5. AIRR Python Reference Library

airr-standards Documentation, Release 0.1.0

then data will be converted to 1-based closed intervals for known fields before writing. If
0, then values will be unchanged.

• debug (bool) – debug state. If True prints debug information.

Returns writer object.

Return type airr.io.RearrangementWriter

close()
Closes the Rearrangement file

write(row)
Write a row to the Rearrangement file

Parameters row (dict) – row to write.

class airr.schema.Schema(definition)
AIRR schema definitions

properties
field definitions.

Type collections.OrderedDict

info
schema info.

Type collections.OrderedDict

required
list of mandatory fields.

Type list

optional
list of non-required fields.

Type list

false_values
accepted string values for False.

Type list

true_values
accepted values for True.

Type list

from_bool(value, validate=False)
Converts a boolean to a string

Parameters

• value (bool) – logical value.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of True or False or ‘T’ or ‘F’.

Return type str

Raises airr.ValidationError – raised if value is invalid when validate is set True.

5.1. API Reference 37

airr-standards Documentation, Release 0.1.0

spec(field)
Get the properties for a field

Parameters name (str) – field name.

Returns definition for the field.

Return type collections.OrderedDict

to_bool(value, validate=False)
Convert a string to a boolean

Parameters

• value (str) – logical value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to True or False.

Return type bool

Raises airr.ValidationError – raised if value is invalid when validate is set True.

to_float(value, validate=False)
Converts a string to a float

Parameters

• value (str) – float value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to a float.

Return type float

Raises airr.ValidationError – raised if value is invalid when validate is set True.

to_int(value, validate=False)
Converts a string to an integer

Parameters

• value (str) – integer value as a string.

• validate (bool) – when True raise a ValidationError for an invalid value. Otherwise,
set invalid values to None.

Returns conversion of the string to an integer.

Return type int

Raises airr.ValidationError – raised if value is invalid when validate is set True.

type(field)
Get the type for a field

Parameters name (str) – field name.

Returns the type definition for the field

Return type str

validate_header(header)
Validate header against the schema

38 Chapter 5. AIRR Python Reference Library

airr-standards Documentation, Release 0.1.0

Parameters header (list) – list of header fields.

Returns True if a ValidationError exception is not raised.

Return type bool

Raises airr.ValidationError – raised if header fails validation.

validate_row(row)
Validate Rearrangements row data against schema

Parameters row (dict) – dictionary containing a single record.

Returns True if a ValidationError exception is not raised.

Return type bool

Raises airr.ValidationError – raised if row fails validation.

5.1.3 Schema

airr.schema.RearrangementSchema Schema object for the Rearrangement definition
AIRR schema definitions

airr.schema.properties
field definitions.

Type collections.OrderedDict

airr.schema.info
schema info.

Type collections.OrderedDict

airr.schema.required
list of mandatory fields.

Type list

airr.schema.optional
list of non-required fields.

Type list

airr.schema.false_values
accepted string values for False.

Type list

airr.schema.true_values
accepted values for True.

Type list

airr.schema.AlignmentSchema Schema object for the Alignment definition
AIRR schema definitions

airr.schema.properties
field definitions.

Type collections.OrderedDict

airr.schema.info
schema info.

Type collections.OrderedDict

5.1. API Reference 39

airr-standards Documentation, Release 0.1.0

airr.schema.required
list of mandatory fields.

Type list

airr.schema.optional
list of non-required fields.

Type list

airr.schema.false_values
accepted string values for False.

Type list

airr.schema.true_values
accepted values for True.

Type list

5.2 Commandline Tools

5.2.1 airr-tools

AIRR Community Standards utility commands.

usage: airr-tools [-h] [--version] ...

-h, --help
show this help message and exit

--version
show program’s version number and exit

airr-tools merge

Merge AIRR rearrangement files.

usage: airr-tools merge [--version] [-h] -o OUT_FILE [--drop] -a AIRR_FILES
[AIRR_FILES ...]

--version
show program’s version number and exit

-h, --help
show this help message and exit

-o <out_file>
Output file name.

--drop
If specified, drop fields that do not exist in all input files. Otherwise, include all columns in all files and fill
missing data with empty strings.

-a <airr_files>
A list of AIRR rearrangement files.

40 Chapter 5. AIRR Python Reference Library

airr-standards Documentation, Release 0.1.0

airr-tools validate

Validate AIRR rearrangement files.

usage: airr-tools validate [--version] [-h] -a AIRR_FILES [AIRR_FILES ...]

--version
show program’s version number and exit

-h, --help
show this help message and exit

-a <airr_files>
A list of AIRR rearrangement files.

5.3 Release Notes

5.3.1 Version 1.2.1: October 5, 2018

• Fixed a bug in the python reference library causing start coordinate values to be empty in some cases when
writing data.

5.3.2 Version 1.2.0: August 17, 2018

• Updated schema set to v1.2.

• Several improvements to the validate_rearrangement function.

• Changed behavior of all airr.interface functions to accept a file path (string) to a single Rearrangement TSV,
instead of requiring a file handle as input.

• Added base argument to RearrangementReader and RearrangementWriter to support optional
conversion of 1-based closed intervals in the TSV to python-style 0-based half-open intervals. Defaults to
conversion.

• Added the custom exception ValidationError for handling validation checks.

• Added the validate argument to RearrangementReader which will raise a ValidationError ex-
ception when reading files with missing required fields or invalid values for known field types.

• Added validate argument to all type conversion methods in Schema, which will now raise a
ValidationError exception for value that cannot be converted when set to True. When set False (de-
fault), the previous behavior of assigning None as the converted value is retained.

• Added validate_header and validate_row methods to Schema and removed validations methods
from RearrangementReader.

• Removed automatic closure of file handle upon reaching the iterator end in RearrangementReader.

5.3.3 Version 1.1.0: May 1, 2018

Initial release.

5.3. Release Notes 41

airr-standards Documentation, Release 0.1.0

42 Chapter 5. AIRR Python Reference Library

CHAPTER 6

AIRR R Reference Library

An R library providing AIRR schema definitions and read, write, and validation functions for AIRR standard formatted
data files.

Download & Installation

To install the latest release from CRAN:

install.packages("airr")

To build from the source code, first install the build dependencies:

install.packages(c("devtools", "roxygen2"))

To install the latest development code via devtools:

library(devtools)
install_github("airr-community/airr-standards/lang/R@master")

Note, using install_github will not build the documentation. To generate the documentation, clone the reposi-
tory and build as normal. Then run the following R commands from the package root lang/R:

library(devtools)
install_deps(dependencies=T)
document()
install()
test()

6.1 About

6.1.1 AIRR Data Representation Reference Library

airr is an R package for working with data formatted according to the AIRR Data Representation schemas. It
includes the full set of schema definitions along with simple functions for read, write and validation.

43

https://github.com/airr-community/airr-standards

airr-standards Documentation, Release 0.1.0

6.1.2 Dependencies

Imports: methods, readr, stats, stringi, yaml
Suggests: knitr, rmarkdown, testthat

6.1.3 Authors

Jason Vander Heiden (aut, cre)
Susanna Marquez (aut)
AIRR Community (cph)

6.2 Usage Vignette

6.2.1 Introduction

Since the use of High-throughput sequencing (HTS) was first introduced to analyze immunoglobulin (B-cell receptor,
antibody) and T-cell receptor repertoires (Freeman et al, 2009; Robins et al, 2009; Weinstein et al, 2009), the increasing
number of studies making use of this technique has produced enormous amounts of data and there exists a pressing
need to develop and adopt common standards, protocols, and policies for generating and sharing data sets. The
Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address this challenge (Breden et al,
2017) and has stablished the set of minimal metadata elements (MiAIRR) required for describing published AIRR
datasets (Rubelt et al, 2017) as well as file formats to represent this data in a machine-readable form. The airr R
package provide read, write and validation of data following the AIRR Data Representation schemas. This vignette
provides a set of simple use examples.

AIRR Data Representation Standards

The AIRR Community’s recommendations for a minimal set of metadata that should be used to describe an AIRR-seq
data set when published or deposited in a AIRR-compliant public repository are described in Rubelt et al, 2017. The
primary aim of this effort is to make published AIRR datasets FAIR (findable, accessible, interoperable, reusable); with
sufficient detail such that a person skilled in the art of AIRR sequencing and data analysis will be able to reproduce
the experiment and data analyses that were performed.

Following this principles, V(D)J reference alignment annotations are saved in standard tab-delimited files (TSV) with
associated metadata provided in accompanying YAML formatted files. The column names and field names in these
files have been defined by the AIRR Data Representation Working Group using a controlled vocabulary of standardized
terms and types to refer to each piece of information.

6.2.2 Reading AIRR formatted files

The airr package contains the function read_rearrangement to read and validate files containing AIRR Rear-
rangement records, where a Rearrangement record describes the collection of optimal annotations on a single sequence
that has undergone V(D)J reference alignment. The usage is straightforward, as the file format is a typical tabulated
file. The argument that needs attention is base, with possible values "0" and "1". base denotes the starting index
for positional fields in the input file. Positional fields are those that contain alignment coordinates and names ending
in “_start” and “_end“. If the input file is using 1-based closed intervals (R style), as defined by the standard, then
positional fields will not be modified under the default setting of base="1". If the input file is using 0-based coordi-
nates with half-open intervals (python style), then positional fields may be converted to 1-based closed intervals using
the argument base="0".

44 Chapter 6. AIRR R Reference Library

mailto:jason.vanderheiden@yale.edu
mailto:susanna.marquez@yale.edu
http://airr-community.org

airr-standards Documentation, Release 0.1.0

library(airr)

example_data <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")
basename(example_data)

[1] "rearrangement-example.tsv.gz"

airr_rearrangement <- read_rearrangement(example_data)
class(airr_rearrangement)

[1] "tbl_df" "tbl" "data.frame"

head(airr_rearrangement)

A tibble: 6 x 33
sequence_id sequence rev_comp productive vj_in_frame stop_codon v_call
<chr> <chr> <lgl> <lgl> <lgl> <lgl> <chr>
1 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV2...
2 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV5...
3 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
4 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
5 SRR765688.... NNNNNNN... FALSE TRUE TRUE FALSE IGHV7...
6 SRR765688.... NNNNNNN... FALSE FALSE TRUE TRUE IGHV2...
... with 26 more variables: d_call <chr>, j_call <chr>, c_call <chr>,
sequence_alignment <chr>, germline_alignment <chr>, junction <chr>,
junction_aa <chr>, v_cigar <chr>, d_cigar <chr>, j_cigar <chr>,
v_sequence_start <int>, v_sequence_end <int>, v_germline_start <int>,
v_germline_end <int>, d_sequence_start <int>, d_sequence_end <int>,
d_germline_start <int>, d_germline_end <int>, j_sequence_start <int>,
j_sequence_end <int>, j_germline_start <int>, j_germline_end <int>,
junction_length <int>, np1_length <int>, np2_length <int>,
duplicate_count <int>

6.2.3 Writing AIRR formatted files

The airr package contains the function write_rearrangement to write Rearrangement records to the AIRR
TSV format.

out_file <- file.path(tempdir(), "airr_out.tsv")
write_rearrangement(airr_rearrangement, out_file)

6.2.4 References

1. Breden, F., E. T. Luning Prak, B. Peters, F. Rubelt, C. A. Schramm, C. E. Busse, J. A. Vander Heiden, et al. 2017.
Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front Immunol 8: 1418.

2. Freeman, J. D., R. L. Warren, J. R. Webb, B. H. Nelson, and R. A. Holt. 2009. Profiling the T-cell receptor
beta-chain repertoire by massively parallel sequencing. Genome Res 19 (10): 1817-24.

3. Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle, O. Kahsai, S. R. Riddell, E. H. Warren,
and C. S. Carlson. 2009. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells.
Blood 114 (19): 4099-4107.

6.2. Usage Vignette 45

airr-standards Documentation, Release 0.1.0

4. Rubelt, F., C. E. Busse, S. A. C. Bukhari, J. P. Burckert, E. Mariotti-Ferrandiz, L. G. Cowell, C. T. Watson, et
al. 2017. Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire
sequencing data. Nat Immunol 18 (12): 1274-8.

5. Weinstein, J. A., N. Jiang, R. A. White, D. S. Fisher, and S. R. Quake. 2009. High-throughput sequencing of
the zebrafish antibody repertoire. Science 324 (5928): 807-10.

6.3 Reference Topics

6.3.1 read_airr

Read an AIRR TSV

Description

read_airr reads a TSV containing AIRR records.

Usage

read_airr(file, base = c("1", "0"), schema = RearrangementSchema, ...)

read_rearrangement(file, base = c("1", "0"), ...)

read_alignment(file, base = c("1", "0"), ...)

Arguments

file input file path.

base starting index for positional fields in the input file. If "1", then these fields will not be modified. If "0", then
fields ending in "_start" and "_end" are 0-based half-open intervals (python style) in the input file and will
be converted to 1-based closed-intervals (R style).

schema Schema object defining the output format.

. . . additional arguments to pass to read_delim.

Value

A data.frame of the TSV file with appropriate type and position conversion for fields defined in the specification.

Details

read_rearrangement reads an AIRR TSV containing Rearrangement data.

read_alignment reads an AIRR TSV containing Alignment data.

46 Chapter 6. AIRR R Reference Library

http://www.rdocumentation.org/packages/readr/topics/read_delim

airr-standards Documentation, Release 0.1.0

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

See also

See Schema for the AIRR schema object definition. See write_airr for writing AIRR data.

6.3.2 write_airr

Write an AIRR TSV

Description

write_airr writes a TSV containing AIRR formatted records.

Usage

write_airr(data, file, base = c("1", "0"),
schema = RearrangementSchema, ...)

write_rearrangement(data, file, base = c("1", "0"), ...)

write_alignment(data, file, base = c("1", "0"), ...)

Arguments

data data.frame of Rearrangement data.

file output file name.

base starting index for positional fields in the output file. Fields in the input data are assumed to be 1-based closed-
intervals (R style). If "1", then these fields will not be modified. If "0", then fields ending in _start and
_end will be converted to 0-based half-open intervals (python style) in the output file.

schema Schema object defining the output format.

. . . additional arguments to pass to write_delim.

Details

write_rearrangement writes a data.frame containing AIRR Rearrangement data to TSV.

write_alignment writes a data.frame containing AIRR Alignment data to TSV.

6.3. Reference Topics 47

Schema-class.html
write_airr.html
http://www.rdocumentation.org/packages/readr/topics/write_delim

airr-standards Documentation, Release 0.1.0

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

Write a Rearrangement data file
outfile <- file.path(tempdir(), "output.tsv")
write_rearrangement(df, outfile)

See also

See Schema for the AIRR schema object definition. See read_airr for reading to AIRR files.

6.3.3 validate_airr

Validate AIRR data

Description

validate_airr validates compliance of the contents of a data.frame to the AIRR data standards.

Usage

validate_airr(data, schema = RearrangementSchema)

Arguments

data data.frame to validate.

schema Schema object defining the data standard.

Value

Returns TRUE if the input data is compliant and FALSE if not.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

Validate a data.frame against the Rearrangement schema
validate_airr(df, schema=RearrangementSchema)

48 Chapter 6. AIRR R Reference Library

Schema-class.html
read_airr.html

airr-standards Documentation, Release 0.1.0

[1] TRUE

6.3.4 load_schema

Load a schema definition

Description

load_schema loads an AIRR object definition from the internal definition set.

Usage

load_schema(definition)

Arguments

definition name of the schema definition.

Value

A Schema object for the definition.

Details

Valid definitions include:

• "Rearrangement"

• "Alignment"

• "Study"

• "Subject"

• "Diagnosis"

• "Sample"

• "CellProcessing"

• "NucleicAcidProcessing"

• "RawSequenceData"

• "SoftwareProcessing"

Examples

6.3. Reference Topics 49

Schema-class.html

airr-standards Documentation, Release 0.1.0

Load the Rearrangement definition
schema <- load_schema("Rearrangement")

Load the Alignment definition
schema <- load_schema("Alignment")

See also

See Schema for the return object.

6.3.5 Schema-class

S4 class defining an AIRR standard schema

Description

Schema defines a common data structure for AIRR Data Representation standards.

Usage

"names"(x)

"["(x, i)

"$"(x, name)

AlignmentSchema

RearrangementSchema

Arguments

x Schema object.

i field name.

name field name.

Format

A Schema object.

Details

The following predefined Schema objects are defined:

AlignmentSchema: AIRR Alignment Schema.

RearrangementSchema: AIRR Rearrangement Schema.

50 Chapter 6. AIRR R Reference Library

Schema-class.html

airr-standards Documentation, Release 0.1.0

Slots

required character vector of required fields.

optional character vector of non-required fields.

properties list of field definitions.

See also

See load_schema for loading a Schema from the definition set. See read_airr, write_airr and validate_airr schema
operators.

6.3.6 ExampleData

Example AIRR data

Description

Example data files compliant with the the AIRR Data Representation standards.

Format

extdata/rearrangement-example.tsv.gz: Rearrangement TSV file.

Examples

Get path to the rearrangement-example file
file <- system.file("extdata", "rearrangement-example.tsv.gz", package="airr")

Load data file
df <- read_rearrangement(file)

6.4 Release Notes

6.4.1 Version 1.2.0: August 17, 2018

• Updated schema set to v1.2.

• Changed defaults to base="1" for read and write functions.

• Updated example TSV file with coordinate changes, addition of germline_alignment data and simplifica-
tion of sequence_id values.

6.4.2 Version 1.1.0: May 1, 2018

Initial release.

6.4. Release Notes 51

load_schema.html
read_airr.html
write_airr.html
validate_airr.html

airr-standards Documentation, Release 0.1.0

52 Chapter 6. AIRR R Reference Library

CHAPTER 7

Applications Supporting AIRR Standards

7.1 Rearrangement Schema

The following list of software tools and databases support the TSV format of v1.2 of the AIRR Rearrangement schema.

Software Version Support
AIRR Python Library 1.2 Input, output and validation
AIRR R Library 1.2 Input, output and validation
IgBLAST 1.10 Output
IGoR TBD Input and output
Immcantation:Change-O 0.4.2 Input, output and conversion
ImmuneDB 0.24.0 Output
iReceptor 2.0 Input, output and conversion
MiXCR 2.2.1 Output
OLGA TBD Input and output
Partis TBD Output
SONAR 3.0 Output
TRIgS 2 Input
VDJServer 1.2.0 Input and output
Vidjil-algo 2018.10 Output
Vidjil Web Platform TBD Input and conversion

53

https://www.ncbi.nlm.nih.gov/igblast
https://github.com/qmarcou/IGoR
https://changeo.readthedocs.io
https://github.com/zsethna/OLGA
http://ireceptor.irmacs.sfu.ca
https://milaboratory.com/software/mixcr
https://github.com/zsethna/OLGA
https://github.com/psathyrella/partis
https://github.com/scharch/SONAR
https://github.com/williamdlees/TRIgS
https://vdjserver.org
http://www.vidjil.org
http://www.vidjil.org

airr-standards Documentation, Release 0.1.0

54 Chapter 7. Applications Supporting AIRR Standards

CHAPTER 8

Examples & Workflows

Example workflows, tutorials and use cases for AIRR Standards.

8.1 AIRR Rearrangement TSV Interoperability Example

The example that follows illustrates the interoperability provided by the AIRR Rearrangement schema. The code
provided demonstrates how to take AIRR formatted data output by IgBLAST and combine it with data processed by
IMGT/HighV-QUEST that has converted to the AIRR format by Change-O. Then, the merged output of these two
distinct tools is used to (a) create MiAIRR compliant GenBank/TLS submission files, and (b) perform a simple V
gene usage analysis task.

8.1.1 Data

We’ve hosted a small set of example data from BioProject PRJNA338795 (Vander Heiden et al, 2017. J Immunol.)
containing both input and output of the example. It may be downloaded from:

Example Data

8.1.2 Walkthrough

Environment setup

We’ll use the Immcantation docker image for this example, which comes loaded with all the tools used in the steps
that follow:

Download the image
docker pull kleinstein/immcantation:devel

Invoke a shell session inside the Immcantation docker image

(continues on next page)

55

http://clip.med.yale.edu/immcantation/examples/airr_example_data.zip

airr-standards Documentation, Release 0.1.0

Fig. 1: Flowchart of the example steps.

56 Chapter 8. Examples & Workflows

airr-standards Documentation, Release 0.1.0

(continued from previous page)

Map example data (~/data) to the container's /data directory
$> docker run -it -v ~/data:/data:z kleinstein/immcantation:devel bash

Generate AIRR formatted TSV files

TSV files compliant with the AIRR Rearrangement schema may be output directly from IgBLAST v1.9+ or generated
from IMGT/HighV-QUEST output (or IgBLAST <=1.8 ouput) using the MakeDb parser provided by Change-O:

Generate TSV directly with IgBLAST
$> cd /data
$> export IGDATA=/usr/local/share/igblast
$> igblastn -query HD13M.fasta -out HD13M_fmt19.tsv -outfmt 19 \

-germline_db_V $IGDATA/database/imgt_human_ig_v \
-germline_db_D $IGDATA/database/imgt_human_ig_d \
-germline_db_J $IGDATA/database/imgt_human_ig_j \
-auxiliary_data $IGDATA/optional_file/human_gl.aux \
-ig_seqtype Ig -organism human \
-domain_system imgt

Generate TSV from IMGT/HighV-QUEST results using changeo:MakeDb
$> MakeDb.py imgt -i HD13N_imgt.txz -s HD13N.fasta \

--scores --partial --format airr

Generate GenBank/TLS submission files

AIRR TSV files can be input directly in Change-O’s ConvertDb-genbank tool to generate MiAIRR compliant files for
submission to GenBank/TLS:

Generate ASN files from IgBLAST output
$> ConvertDb.py genbank -d HD13M_fmt7_db-pass.tsv --format airr \

--inf IgBLAST:1.7.0 --organism "Homo sapiens" \
--tissue "Peripheral blood" --cell "naive B cell" \
--id --asn -sbt HD13M.sbt

Generate ASN files from IMGT/HighV-QUEST output
$> ConvertDb.py genbank -d HD13N_imgt_db-pass.tsv --format airr \

--inf IMGT/HighV-QUEST:1.5.7.1 --organism "Homo sapiens" \
--tissue "peripheral blood" --cell "naive B cell" \
--cregion c_call --id --asn -sbt HD13M.sbt

Merge files and count V family usage

AIRR TSV files from different tools and easy combined to perform analysis on data generated using different software.
Below is shown a simple V family usage analysis after merging the IgBLAST and IMGT/HighV-QUEST outputs into
a single table:

Count V family usage in R
Imports
$> R
R> library(alakazam)
R> library(dplyr)
R> library(ggplot2)

(continues on next page)

8.1. AIRR Rearrangement TSV Interoperability Example 57

airr-standards Documentation, Release 0.1.0

(continued from previous page)

Merge IgBLAST and IMGT/HighV-QUEST results
R> db_m <- read.delim("HD13M_fmt7_db-pass.tsv")
R> db_n <- read.delim("HD13N_imgt_db-pass.tsv")
R> db_m$cell_type <- "memory"
R> db_n$cell_type <- "naive"
R> db <- bind_rows(db_m, db_n)

Subset to heavy chain
R> db <- subset(db, grepl("IGH", v_call))

Count combined V gene usage
R> v_usage <- countGenes(db, "v_call", groups="cell_type",

mode="family")

Plot V family usage
R> ggplot(v_usage, aes(x=GENE, y=SEQ_FREQ, fill=cell_type)) +

geom_col(position="dodge") +
scale_fill_brewer(name="Cell type", palette="Set1") +
xlab("") +
ylab("Fraction of repertoire")

Fig. 2: V family usage for the combined data set.

58 Chapter 8. Examples & Workflows

Bibliography

[Rubelt_2017] Rubelt F et al. AIRR Community Recommendations for Sharing Immune Repertoire Sequencing Data.
Nat Immunol 18:1274 (2017) DOI: 10.1038/ni.3873

[Breden_2017] Breden F et al. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front
Immunol 8:1418 (2017) DOI: 10.3389/fimmu.2017.01418

[Zenodo_1185414] Release archive of the AIRR Standards repository. (2015-2018) DOI: 10.5281/zenodo.1185414

[LIGMDB_V12] IMGT-ONTOLOGY definitions. <http://www.imgt.org/ligmdb/label#JUNCTION>

[INSDC_FT] The DDBJ/ENA/GenBank Feature Table Definition. <http://www.insdc.org/documents/feature-table>

[ENA_MANUAL] European Nucleotide Archive Annotated/Assembled Sequences User Manual. <http://ftp.ebi.ac.
uk/pub/databases/ena/sequence/release/doc/usrman.txt>

[GENBANK_FF] GenBank Flat File Format. <https://ftp.ncbi.nih.gov/genbank/gbrel.txt>

[GENBANK_SR] GenBank Sample Record. <https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html>

[INSDC_XREF] Controlled vocabulary for /db_xref qualifier. <http://www.insdc.org/documents/
dbxref-qualifier-vocabulary>

[NCBI_NBK47528] SRA Handbook. <https://www.ncbi.nlm.nih.gov/books/NBK47528/>

[Rubelt_2017] Rubelt F et al. AIRR Community Recommendations for Sharing Immune Repertoire Sequencing Data.
Nat Immunol 18:1274 (2017) DOI: 10.1038/ni.3873

[Breden_2017] Breden F et al. Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data. Front
Immunol 8:1418 (2017) DOI: 10.3389/fimmu.2017.01418

[Zenodo_1185414] Release archive of the AIRR Standards repository. (2015-2018) DOI: 10.5281/zenodo.1185414

59

https://doi.org/10.1038/ni.3873
https://doi.org/10.3389/fimmu.2017.01418
https://doi.org/10.5281/zenodo.1185414
http://www.imgt.org/ligmdb/label#JUNCTION
http://www.insdc.org/documents/feature-table
http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt
http://ftp.ebi.ac.uk/pub/databases/ena/sequence/release/doc/usrman.txt
https://ftp.ncbi.nih.gov/genbank/gbrel.txt
https://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.insdc.org/documents/dbxref-qualifier-vocabulary
http://www.insdc.org/documents/dbxref-qualifier-vocabulary
https://www.ncbi.nlm.nih.gov/books/NBK47528/
https://doi.org/10.1038/ni.3873
https://doi.org/10.3389/fimmu.2017.01418
https://doi.org/10.5281/zenodo.1185414

airr-standards Documentation, Release 0.1.0

60 Bibliography

Index

Symbols
-drop

airr-tools-merge command line
option, 40

-version
airr-tools command line option, 40
airr-tools-merge command line

option, 40
airr-tools-validate command line

option, 41
-a <airr_files>

airr-tools-merge command line
option, 40

airr-tools-validate command line
option, 41

-h, -help
airr-tools command line option, 40
airr-tools-merge command line

option, 40
airr-tools-validate command line

option, 41
-o <out_file>

airr-tools-merge command line
option, 40

__init__() (airr.io.RearrangementReader method),
36

__init__() (airr.io.RearrangementWriter method),
36

__iter__() (airr.io.RearrangementReader method),
36

__next__() (airr.io.RearrangementReader method),
36

A
airr-tools command line option

-version, 40
-h, -help, 40

airr-tools-merge command line option
-drop, 40

-version, 40
-a <airr_files>, 40
-h, -help, 40
-o <out_file>, 40

airr-tools-validate command line
option

-version, 41
-a <airr_files>, 41
-h, -help, 41

AlignmentSchema (in module airr.schema), 39

C
close() (airr.io.RearrangementReader method), 36
close() (airr.io.RearrangementWriter method), 37
create_rearrangement() (in module airr), 34

D
derive_rearrangement() (in module airr), 34
dump_rearrangement() (in module airr), 35

E
external_fields (airr.io.RearrangementReader at-

tribute), 35
external_fields (airr.io.RearrangementWriter at-

tribute), 36

F
false_values (airr.schema.Schema attribute), 37
false_values (in module airr.schema), 39, 40
fields (airr.io.RearrangementReader attribute), 35
fields (airr.io.RearrangementWriter attribute), 36
from_bool() (airr.schema.Schema method), 37

I
info (airr.schema.Schema attribute), 37
info (in module airr.schema), 39

L
load_rearrangement() (in module airr), 34

61

airr-standards Documentation, Release 0.1.0

M
merge_rearrangement() (in module airr), 35

N
next() (airr.io.RearrangementReader method), 36

O
optional (airr.schema.Schema attribute), 37
optional (in module airr.schema), 39, 40

P
properties (airr.schema.Schema attribute), 37
properties (in module airr.schema), 39

R
read_rearrangement() (in module airr), 34
RearrangementReader (class in airr.io), 35
RearrangementSchema (in module airr.schema), 39
RearrangementWriter (class in airr.io), 36
required (airr.schema.Schema attribute), 37
required (in module airr.schema), 39, 40

S
Schema (class in airr.schema), 37
spec() (airr.schema.Schema method), 37

T
to_bool() (airr.schema.Schema method), 38
to_float() (airr.schema.Schema method), 38
to_int() (airr.schema.Schema method), 38
true_values (airr.schema.Schema attribute), 37
true_values (in module airr.schema), 39, 40
type() (airr.schema.Schema method), 38

V
validate_header() (airr.schema.Schema method),

38
validate_rearrangement() (in module airr), 35
validate_row() (airr.schema.Schema method), 39

W
write() (airr.io.RearrangementWriter method), 37

62 Index

	MiAIRR Standard
	Introduction to MiAIRR
	Summary
	Implementations
	References

	MiAIRR-to-NCBI Implementation
	Guide for submission of AIRR-seq data to NCBI
	MiAIRR-to-NCBI Submission Manual
	MiAIRR-to-NCBI Specification
	Introduction
	References

	CAIRR Pipeline
	AIRR Data Representations
	Field Definitions
	Rearrangement Schema
	Alignment Schema (Experimental)

	Format Specification
	Structure
	Data Values

	Software Tools Standard
	AIRR Software WG - Guidance for AIRR Software Tools
	Introduction
	Requirements
	Recommendations
	Explanatory Notes
	Ratification

	AIRR Software WG - Compliance Checklist for AIRR Software Tools
	Evaluation Data Sets

	AIRR Python Reference Library
	API Reference
	Inferface
	Classes
	Schema

	Commandline Tools
	airr-tools

	Release Notes
	Version 1.2.1: October 5, 2018
	Version 1.2.0: August 17, 2018
	Version 1.1.0: May 1, 2018

	AIRR R Reference Library
	About
	AIRR Data Representation Reference Library
	Dependencies
	Authors

	Usage Vignette
	Introduction
	Reading AIRR formatted files
	Writing AIRR formatted files
	References

	Reference Topics
	read_airr
	write_airr
	validate_airr
	load_schema
	Schema-class
	ExampleData

	Release Notes
	Version 1.2.0: August 17, 2018
	Version 1.1.0: May 1, 2018

	Applications Supporting AIRR Standards
	Rearrangement Schema

	Examples & Workflows
	AIRR Rearrangement TSV Interoperability Example
	Data
	Walkthrough

	Bibliography
	Index

